
UNIVERSITY OF PRETORIA

MASTERS THESIS

Comparision of Adversarial and
Non-adversarial Music Generative

Models

By
Moseli Mots’oehli

Submitted in partial ful�llment of the requirements for the degree

Masters in Information Technology (Big Data Science)

in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria, Pretoria

June 21, 2019



Comparision Of Adversarial And Non-adversarial Music Generative
Models

by

Moseli Mots’oehli
E-mail: u12061019@tuks.co.za

Abstract

Algorithmic music composition is a way of composing musical pieces with minimal to
no human intervention. While recurrent neural networks are traditionally applied to
many sequence-to-sequence prediction tasks, including successful implementations
on music composition, their standard supervised learning method based on input to
output mapping leads to a lack of creativity and variety. These models can therefore
be seen as potentially unsuitable for tasks where a level or artistry is required, such
as music. Generative adversarial networks, on the other hand, learn the generative
distribution of data, and are used in tasks that require a level of creativity. This work
implements and compares adversarial and non-adversarial training of recurrent neu-
ral network music composers on MIDI data. The resulting generated music samples
are evaluated by volunteer human listeners, and their preferences are recorded to test
whether adversarial training produces music samples that are more pleasing to listen
to. The evaluation indicates that adversarial training does produce more aesthetically
pleasing music.

Keywords: Music generation, MIDI, Generative adversarial networks, LSTM.

Supervisors : A.S.Bosman
Prof. J.P. de Villiers

Department : Department of Computer Science
Degree : Master of Information Technology (Big Data Science)

i

mailto:u12061019@tuks.co.za


“Music expresses that which cannot be said and on which it is impos-
sible to be silent.”

-Victor Hugo (1864)

“Every artist was first an amateur”

-Ralph Waldo Emerson

ii



Acknowledgments

I am grateful to the following people and institutions for the helping hand they pro-
vided during the two years I spent studying towards the completion of my master’s
degree:

• My supervisors Anna Bosman and Pieter de Villiers at the University of Pretoria,
for allowing me to work on this topic under their supervision and the substantial
amount of information and guidance they provided throughout the process of
completing this dissertation;

• My family and friends, for the undying support and motivation they provided
to help me go through the hard times I faced;

• Christopher Olah, Thalles Silva and Florian Colombo each for the generous per-
mission to use neural network images from their work;

• The National Research Foundation of South Africa (NRF) and FirstRand for the
partial financial support towards funding my studies.

iii



Contents

List of Figures iv

List of Tables vi

Glossary ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Dissertation Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Neural Music Generation 4

3 Feed Forward and Recurrent Neural Networks 7
3.1 Multi-layer Feed-Forward Neural Networks . . . . . . . . . . . . . . . 7

3.1.1 Important Background Concepts . . . . . . . . . . . . . . . . . . 9
3.1.2 Back Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Back Propagation Through Time . . . . . . . . . . . . . . . . . . 15
3.2.2 Long-Short Term Memory Neural Networks . . . . . . . . . . . 16

3.3 Encoder-Decoder Models . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Convolutional and Adversarial Neural Networks 19
4.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . 19

i



4.2 Generative Adversarial Neural networks . . . . . . . . . . . . . . . . . 20
4.2.1 Wasserstein GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Data 24
5.1 ABC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 MIDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.3 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.4 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Methodology 30
6.1 Midi State-Matrix Representation . . . . . . . . . . . . . . . . . . . . . . 30

6.1.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2.1 Encoder-Decoder LSTM . . . . . . . . . . . . . . . . . . . . . . . 34
6.2.2 LSTM WGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3.1 Wilcoxon Signed-Rank T-Test . . . . . . . . . . . . . . . . . . . . 42

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Experiments 45
7.1 MIDI Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2 Model Hyper-Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2.1 Encoder-Decocer . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2.2 WGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.3 Music Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8 Results and Analysis 51
8.1 Training and Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ii



8.2 Mean Opinion Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.3 Wilcoxon Signed-Rank Test . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.4 Listener Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9 Conclusion 60

iii



List of Figures

3.1 A fully connected feed forward ANN that takes 3 inputs, with 2 hidden layers
and an output layer of 2 neurons. Source: [2] . . . . . . . . . . . . . . . . . 8

3.2 Common activation functions. Source: [4] . . . . . . . . . . . . . . . . . . . 13
3.3 A recurrent neural network cell showing information flow over time. Source:[17] 14
3.4 An LSTM cell unrolled in time. Source: [17] . . . . . . . . . . . . . . . . . 17

4.1 A time dilated convolutional neural network. Source:[19] . . . . . . . . . . . 20
4.2 A generative adversarial neural network with convolutional neural networks

in both the generator and discriminator for handwritten digit image genera-
tion. Source: [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 ABC transcription of Speed of the Plough. Source: [71]. “|:” Is a repeat
instruction until a stop instruction “:|” is encountered. . . . . . . . . . . . 25

6.1 Visualization of sample MIDI files in the note state-matrix representation. . . 31
6.2 The encoder bidirectional LSTM network. Inputs St+i represent note pitch

information per timeseries observation (tick) pulled from the 2D note progres-
sion state-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 The decoder unidirectional LSTM network.Inputs St+i represent note pitch
information per timeseries observation (tick) pulled from the 2D note progres-
sion state-matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.4 WGAN architecture for image generation. Source: [68] . . . . . . . . . . . . 39

iv



7.1 The figure above shows G(z)’s and D(x)’s training losses for 12 grid search
points, where the number of critic training epochs (n_critic) and batch size are
varied. Top: Loss curves for batch size = 32. for n_critic = 2, 5, 10 and 20
Middle: Loss curves for batch size = 64. Bottom: Loss curves for batch size
= 128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.1 Left: Five-fold CV BAcc curves for the encoder-decoder LSTM. Right: Mean
training and CV BAcc curves. . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.2 Loss curves for WGAN with the best grid search parameters: n_critic=5 and
batch size=32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.3 Opinion score distribution for WGAN and encoder-decoder LSTM generated
music samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

v



List of Tables

3.1 Classification confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.1 A sample MIDI file with note action messages presented in tabular form. The
“Note” column represents pitch. Each of the file attributes listed in the table
are discussed below. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Training dataset description by composer. Number of notes represent both note
on and off messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.1 Number of prediction instances/note messages in the training dataset showing
the data class imbalance inherent in the state-matrix representation used in
this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.1 Training hyper-parameters for the encoder-decoder neural network. . . . . . 46
7.2 Mean 5-fold CV balanced accuracy scores. . . . . . . . . . . . . . . . . . . . 46
7.3 Training hyper-parameters for the WGAN model. . . . . . . . . . . . . . . . 47

8.1 Training and test accuracies. . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.2 Training and five-fold CV balanced accuracy scores for the encoder-decoder

LSTM neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.3 Training and five-fold CV EM loss for the WGAN model. . . . . . . . . . . . 53
8.4 Listener impression scores for WGAN generated samples S1 to S8. q(si) rep-

resents the MOS for each sample. . . . . . . . . . . . . . . . . . . . . . . . . 55
8.5 Listener impression scores for the encoder-decoder LSTM generated samples

S9 to S16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vi



8.6 Mean and Median generator quality scores. Although the sample median
scores from the two models are equal, this does not imply they are drawn from
polulations with equal median scores. It is the Wilcoxon signed-rank t-test
that gives a conclusive answer on equality of the population medians. . . . . 56

8.7 Wilcoxon signed-rank test results . . . . . . . . . . . . . . . . . . . . . . . 57

vii



viii



Glossary

ANN: Artificial neural network
BAcc: Balanced accuracy
BPTT: Back propagation through time
CNN: Convolutional neural network
CV: Cross validation
EM: Earth mover
FFNN: Feed forward neural network
FN: False negative
FP: False positive
GAN: Generative adversarial network
GRU: Gated recurrent unit
KL: Kullback–Leibler
LSTM: Long-short term memory neural network
MIDI: Musical instrument digital interface
MLE: Maximum likelihood estimation
MOS: Mean opinion score
MSE: Mean square error
NLP: Natural language processing
NN: Neural network
RELU: Rectified linear unit
RL: Reinforcement learning
RNN: Recurrent neural network
TN: True negative
TP: True positive
WGAN: Wasserstein generative adversarial network

ix



Chapter 1

Introduction

1.1 Motivation
Music composition, like most art forms, has for a long time been a skill specific to hu-
man beings. It has an intuitive side to it that is necessary to determine which pitches
create harmorny together, what chords can be played after a certain note, or what
note progressions are in violation of intrinsic musical theory. With the recent suc-
cesses in neural network modeling of predictive natural behaviour and generative
models, there have been good applications of modelling note progression probabili-
ties for music generation.

The two dominant approaches to neural music generation are adversarial training
[36, 37, 46, 56], and sequence-to-sequence recurrent networks [57, 58, 65], each with its
merits. Although waveforms have been shown to be a viable way to generate audio
not necessarily specific to music [19], it is symbolic representations that are favoured
in literature for the task of music generation [37, 46, 53, 55, 57]. Owing to the existing
lack of out-right comparisons between adversarial and non-adversarial training for
music generation, the aim of this study is to compare music samples generated by
two generative models, one trained in an adversarial setting, and the other in a non-
adversarial setting, using musical instrument digital interface (MIDI) data.

1



2

1.2 Problem Statement
This work strives to demonstrate two points, namely: (1) That generative adversar-
ial network (GAN)s with long-short term memory neural network (LSTM) cells can
be used to generate polyphonic music that is realistic, creative and pleasing to lis-
ten to, and (2) that generative adversarial models with LSTM cells perform better
than an identical non-adversarial LSTM based generator. An LSTM based neural net-
work will be trained in an adversarial setting to generate music in MIDI format, and
compared to an LSTM encoder-decoder network [14], that is not trained in an adver-
sarial setting. Although adversarial training is much more complex in comparison to
the encoder-decoder configuration for sequence-to-sequence models, GAN’s ability
to model note progression by sampling a latent space leads to a more diverse gen-
erator. A Wasserstein generative adversarial network (WGAN) [42] is implemented
instead of the maximum likelihood estimation (MLE) based GAN to ensure stable
adversarial training. Although MIDInet [46], a GAN based convolutional neural net-
work (CNN) music generator, has been shown to produce better results compared
to melodyRNN [58] models that deploy recurrent neural network (RNN) cells, the
two networks implement two different generator types, CNN and RNN respectively,
so the study provides no evidence to support the hypothesis that GAN training pro-
duces superior results in the music generation domain.

The musical data used in this work is in MIDI format. The simplicity inherent in pre-
processing MIDI data as compared to pre-processing raw audio made MIDI a more
suitable choice of music representation for the training data. To ensure music quality
is not negatively affected by data representation, a common 2D state-matrix represen-
tation [40] of note progression is adopted for both training configurations. Although
multi-track notes are captured, for the purpose of comparing the network’s ability to
model note progression, it is trivial to also learn multi-track probability distributions,
and instead assume a MIDI type 0 file explained in Section 5.2 on decoding the re-
sulting music and playback. The background of the architectures used in this study
will also be explored, beginning with fully connected feed forward neural networks,
activation functions, convolutions, recurrent networks, LSTM cells, and adversarial
training. Standard music evaluation methods are used to come to a conclusion.



3

1.3 State of the Art
Despite much progress in music generation using deep learning, majority of meth-
ods focus only on note and chord progression transition probabilities when using a
symbolic data representation such as MIDI . Majority of the work focusing on MIDI
implement some form of LSTM [36], while the best networks on raw audio generation
implement a CNN [19]. In Chapter 2, existing neural network (NN) implementations
and their results for music generation are discussed.

1.4 Dissertation Layout
Chapter 2 explores existing recurrent and non-recurrent neural network imple-

mentations for music generation, and shows how the work in this thesis relates to
existing literature.

In Chapter 3, the basic building blocks of deep neural networks are discussed, fol-
lowed by a discussion on recurrent neural networks, which are used for modelling
temporal data.

In Chapter 4, other non-recurrent neural network architectures such as convolu-
tional neural networks used for music generation are discussed together with an in-
troduction to adversarial training.

In Chapter 5, the MIDI data representation is discussed and motivation is given as
to why it is preferred over other music representations for neural network training.

Chapter 6 contains the architectural details of the two generative models to be
implemented and compared. The procedure for representing MIDI data is also dis-
cussed.

Chapters 7 and 8 together form the experimental setup and analysis of the results
thereof, followed by the conclusion in Chapter 9.



Chapter 2

Neural Music Generation

The goal of algorithmic music generation is to be able to develop systems that enable
automation of the composition process, while still achieving results comparable to
human generated music. Although music as an art form has existed for millennia, the
earliest publications on algorithmic composition are only as old as 1960 [52]. It was
only towards the mid 1970s that significant interest and research was put into algo-
rithmic music generation. There are different approaches to algorithmic music gener-
ation such as using mathematical models (stochastic processes) [54], grammar based
methods [53], learning algorithms [55–58] and evolutionary methods [23]. However,
the most promising results have come from the learning algorithms in recent years,
in particular deep learning neural networks. The focus of this study is on music com-
position using artificial neural network (ANN) learning algorithms [19, 46].

A number of inventions in the deep learning domain contributed to majority of the
work performed in neural music generation. The LSTM network [15] is well suited
to successful learning of sequential data such as audio, and has the capability to re-
call notes generated a number of time steps back by solving the vanishing gradient
dilemma that other RNNs suffered from. GANs [33] are especially useful for generat-
ing realistic data while reducing overfitting, and have been found to produce creative
art [34–36]. Majority of the music generating neural networks to date are trained on
either jazz or classical music, and only the piano track is used or all other tracks are
played back on piano. SeqGAN [36] is a hybrid GAN between deep learning and rein-
forcement learning (RL), this model uses a RL generator agent to guide the generative

4



CHAPTER 2. NEURAL MUSIC GENERATION 5

learning. By using RL with the discriminator providing a reward function, seqGAN
[36] is able to out-perform standard MLE based GANs in music generation.

Colombo and Gerstern [55] proposed BachProp, an LSTM based network for learning
note progression independent of note representation. They propose a three layered
LSTM architecture to model notes, their timing, and duration by conditioning the two
other attributes on the current note per time step. Although Colombo and Gerstern
use a normalized MIDI representation of all training songs for training, they neglect
to indicate how the network is representation invariant, as it assumes MIDI input
data. Like Colombo and Gerstern, Olof [37] introduced continuous-recurrent GAN
(CRNNGAN) for the same task, and adopted a similar network structure with three
stacked LSTM layers in the generator network to enable learning of high complexity
notes, chords and melody with an additional MIDI feature (note intensity) over Bach-
Prop. Unlike BachProp [55], CRNNGAN is trained in an adversarial setting. Due to
their-three layered generator and continuous representation, CRNNGAN is limited to
producing only up to three different tones per time step, hence produces music that
is not rich in polyphony.

Bengio et al. [57] show that a gated recurrent unit neural network can be used to
achieve results at least comparable to those of more sophisticated gated networks
such as LSTM, keeping all training parameters equal. They train both models on
piano-track MIDI data, and evaluate generated samples for polyphony. However,
comparison over multiple datasets produced inconclusive results. MelodyRNN [58]
is a collection of RNN models (LookbackRNN and AttentionRNN) for polyphonic
music generation trained on MIDI data. The LookBackRNN implements a look-back
mechanism to help the network recall very long dependencies in generation, and the
attentionRNN implements an attention mechanism [25] for increased note repetition
to improve rhythm.

WaveNet [19] introduced by the Google DeepMind team is a completely probabilis-
tic network that uses the same architecture as PixelCNN [28] to generate raw audio
waveforms from a dataset of mp3 files with multiple tagged genres. WaveNet was
developed mainly for the task of text to speech synthesis, and uses multiple layers of
time dilated convolutional networks instead of more traditional and suiting sequence



CHAPTER 2. NEURAL MUSIC GENERATION 6

models such as RNNs. The DeepMind team do this to avoid the long training time
required for RNNs. However, WaveNet’s generator is not trained in an adversarial
setting, and no quantitative results on music generation are reported by the authors.

MidiNet [46] expands on this work using MIDI files instead, and train CNNs in an
adversarial setting. Both networks learn note progression by sequentially condition-
ing future notes on the distribution of previously generated notes by using dilated
convolutions. Although MidiNet outperforms standard RNNs, and produces music
that is considered more varied and pleasing to listen to than both the LookbackRNN
and AttentionRNN, it is unclear as to how it would compare to LSTM and gated re-
current unit (GRU) based networks which are superior to standard RNNs on very
long sequence tasks. This work implements an encoder-decoder LSTM network in
the same fashion as BachProp[55], and an LSTM based GAN as in [36, 37, 56].

The majority of the work mentioned above use MIDI training data, and only a few
train from raw waveforms. The most common way of representing the MIDI features
to be learned is using a 2D matrix [56] of binary entries where pitch is on one axis,
and the other axis represents time in ticks. In some cases the real continuous values
from the MIDI messages are entries in the 2D matrix [37, 65]. Some work has been
done in learning multi-track note progressions, although results show lack of syn-
chrony and cross track dependency learning. Chu et al. [70] implement a sequence-
to-sequence model of four stacked LSTM layers to model multi-track note progres-
sion with each LSTM cell generating its own track’s output. Other notable neural
network approaches for music generation include variational autoencoders [60], re-
stricted Boltzmann machines [61], and deep belief neural networks [47] to learn note
progression probabilities that boost rhythmic scores. They show how the resulting
model can be used as a prior distribution for training an RNN for polyphonic music.

In the next chapter, background on the neural network architectures used for music
generation and their components is discussed.



Chapter 3

Feed Forward and Recurrent Neural
Networks

In this chapter, the basic building blocks of NNs are discussed together with com-
mon architectures relevant to temporal data. Section 3.1 covers the building blocks
of multi-layer neural networks and how the components are connected together to
allow learning. RNNs, and how their architechture allows for modelling of temporal
dependencies, are then discussed in Section 3.2. The chapter concludes by providing
an overview of the encoder-decoder configuration of training sequence-to-sequence
NNs in Section 3.3.

3.1 Multi-layer Feed-Forward Neural Networks
ANNs are computational units inspired by the biological neural networks that make
up the human brain. The basic structure of ANNs consists of an input layer of multi-
ple neurons interconnected to one or more hidden layers through trainable weights,
bias term and non-linearity activation functions, and finally connecting to an output
layer. These networks are trained to adjust the collective weights of all layers so as
to produce output vector ȳ = (y1, y2, ..., ym), m ∈ Z that optimizes a predefined ob-
jective function given input vector x̄ = (x1, x2, ..., xn), n ∈ Z. The forward pass of
information in a supervised ANN trained using gradient descent [69] is followed by
back propagation [3] of the output errors back to all layers, and adjustment of the net-
work weights. ANNs with only a few hidden layers and limited neurons within each

7



CHAPTER 3. FEED FORWARD AND RECURRENT NEURAL NETWORKS 8

layer such as the four layered neural network in Figure 3.1 are capable of learning a
limited degree of complexity. To expand on this, more hidden layers can be added to
make the network deeper and denser with interconnections, hence the name multi-
layer or deep neural network (DNN).

Within each neuron, the activation function used determines the type of relationships
the network can model. A DNN with only linear activation functions is limited to
learning only linear combinatory mappings of the inputs to the outputs. To rem-
edy this problem, nonlinear activation functions such as sigmoid σ(x), rectified linear
unit (RELU) [7], and tanh(x) are introduced throughout the network. Given a deep
enough network of bounded width and suitably nonlinear activation functions, the
multi-layer neural network is said to be a universal continuous function approximator
[8]. The most basic configurations of these networks are however not well-equipped
to handle temporal or spatial dependencies in the input data, which has led to the
invention of more domain specific architectures for time series prediction and image
recognition. All neural network variants below are inspired and borrow much from
the original multi-layer feed-forward neural network.

Figure 3.1: A fully connected feed forward ANN that takes 3 inputs, with 2 hidden layers and an
output layer of 2 neurons. Source: [2]



CHAPTER 3. FEED FORWARD AND RECURRENT NEURAL NETWORKS 9

3.1.1 Important Background Concepts

Throughout the chapters in this work, a number of key concepts will be mentioned
without explanation. In this section, some of these concepts are breifly discussed
starting with training, test and validation dataset splits in Subsection 3.1.1.1, regu-
larization techniques in Subsection 3.1.1.2, and finally evaluation matrices and loss
functions in Subsection 3.1.1.3.

3.1.1.1 Training, Validation, and Test Datasets

In supervised machine learning, it is common to split all available data into three
subsets, namely: training, validation, and test datasets. The training and test dataset
are completely disjoint sets, while the validation dataset is only independent of the
training set for each complete pass of the entire training set. The validation set is kept
away from the model during training, and is used to assess how well the model per-
forms on a reasonably similar data distribution

The reason for spliting the dataset is to evaluate whether the model generalizes well
and does not overfit. The training set offers supervised examples to the model , used
for network weight tuning. The validation set is used to measure unbiased perfor-
mance on the training dataset for network parameter tuning during cross validation.
The test set is used to measure how well the network generalizes on an unseen dataset
generated by a reasonably independent yet similar distribution compared to that of
the training dataset. An overly complex model normally performs better on the train-
ing set than it does on the test set, this phenomenon is termed overfitting and is reme-
died by using regularization, discussed next.

3.1.1.2 Regularization

Regularization methods are methods used to discourage ANNs from using more
training weights than is necessary, since excessive weights may lead to overfitting. In
other words, regularization either penalizes an overly complex model or forces a NN
to use only a random portion of its weights per training step. Examples of the former



CHAPTER 3. FEED FORWARD AND RECURRENT NEURAL NETWORKS 10

method are adding the first (L1) or second (L2) norms [9] of the network weights to
the loss function. The latter method is known as dropout [10]. Dropout reduces model
complexity by randomly setting a portion of the total number of network weights to
zero with probability α for each training epoch. A dropout probability of α = 0.2 is
used in the experiments in this dissertation.

3.1.1.3 Evaluation Metrics and Loss Functions

During and after training of NNs, it is important to evaluate how well the learned
network weights fit the data. Common metrics for evaluating performance include:
accuracy (propotion of correct prediction instances out of all prediction instances),
recall score (proportion of positive instances correctly classified out of all positive
predictions), and balanced accuracy (BAcc), given by the equation:

BAcc(y, ŷ) =
1
2
×
[

TP
TP + FN

+
TN

TN + FP

]
, (3.1)

where true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) are given by the total prediction instances in the labelled data satisfying the
confusion matrix in table 3.1:

Ground Truth Labels
Predicted Labels y = 1 y = 0
ŷ = 1 TP FP
ŷ = 0 FN TN

Table 3.1: Classification confusion matrix

Loss functions, also known as objective functions, are used to measure how large
the scalar error is between the model’s current predictions and the expected output.
During training, the goal is to minimize this loss to an acceptable level. Common loss
functions include: mean square error (MSE) (mean squared difference between the
predictions and the real regression target values). The cross entropy loss 3.2, used for
classification tasks, minimizes the difference between the actual and the target output
distributions and is defined by the equation:



CHAPTER 3. FEED FORWARD AND RECURRENT NEURAL NETWORKS 11

H(y, ŷ) = −∑
i

yi log(ŷi), (3.2)

where yi and ŷi represent the true label and the predicted activation probability re-
spectfully. This is an expectation over the true distribution of yi.The values outputed
by the loss function are used by the model in fiting the data in a process called back
propagation [3], discussed in the next section.

3.1.2 Back Propagation

In the forward pass of information in a ANN, an input vector xi−1 is multiplied by
a weight matrix Wi−1, then a bias term bi−1 is added, and a non-linearity activation
function f is applied to the result to get the output of the next layer in the network as
shown in the equation below:

yi = f (xi−1Wi−1 + bi−1), (3.3)

for layer i = 1, 2, ..n. This process continues until the final output layer where the
model error on estimation is calculated using a loss functions such as the MSE, or
cross-entropy loss.

The error term is then propagated back to all layers to adjust the model weights in
such a manner that corrects for the error by minimizing the loss function. Gradient
descent is applied to find the minimum of the objective function. Since the objective
function is a function of multiple activation functions, the chain rule of differentia-
tion is used in back propagation [3] to calculate the gradients of the network with
respect to all the network weights. The process of calculating gradients and perform-
ing weight updates is repeated over the entire training dataset multiple times until an
acceptable number of iterations or acceptable loss value is reached.

3.1.3 Activation Functions

Activation functions are functions f (xW + b) within the neurons of a NN that take as
input the weighted outputs of a previous layer and produce an output. Different ac-
tivation functions are used in different layers of the NN depending on the properties



CHAPTER 3. FEED FORWARD AND RECURRENT NEURAL NETWORKS 12

of the target being approximated, and the properties of the activation itself. Common
activation functions used in deep learning are discussed below. The linear activation
function is giveb by: y = f (xW + b) = xW + b. Notice that ∂ f

∂x = W. This implies
that back propagation will result in constant gradient to the weights regardless of the
input x.

3.1.3.1 Sigmoid

The sigmoid activation function is defined by:

σ(x) =
1

1 + e−x . (3.4)

When x is large and tends to ∞ , e−x approaches 0, and so σ(x) tends to 1. When x
tends to −∞ , e−x tends to ∞ and so σ(x) approaches 0. This is shown by the sigmoid
function in Figure 3.2. Unlike the linear activation function, σ(x) is bounded between
0 and 1. The gradient is given by:

∂σ

∂x
= −(−e−x)(1 + e−x)−2 =

σ(x)
(1 + ex)

, (3.5)

which is a function of x unlike in the linear activation. When x −→ ∞, σ(x) −→ 1 and
so ∂σ

∂x −→ 0. Similarly, when x −→ −∞, ∂σ
∂x −→ 0. This property of the sigmoid activa-

tion function is a major problem in s since it implies that for relatively large inputs
to a layer, the gradients tend to zero, this multiplied with the error terms results in
insignificantly small to no weight updates, and the network fails to learn. The phe-
nomenon is termed the vanishing gradient problem [5]. The vanishing gradient prob-
lem is common for bounded functions such as sigmoid and hyperbolic tangent. The
vanishing gradient is one of the main problems in modelling temporal dependencies
in sequential data such as music.

3.1.3.2 Hyperbolic Tangent

The hyperbolic tangent function (tanh) squashes its inputs to a range between -1 and
1, and like the sigmoid activation saturates towards the two extremes with gradients
tending to zero for large negative and positive x as shown in Figure 3.2. However,



CHAPTER 3. FEED FORWARD AND RECURRENT NEURAL NETWORKS 13

Figure 3.2: Common activation functions. Source: [4]

unlike sigmoid, tanh output is centred around zero. The tanh activation can be ex-
pressed as a scaled sigmoid function:

tanh(x) =
ex − e−x

ex + e−x

=
1− e−2x

1 + e−2x

= (1− e−2x)σ(2x)

= 2σ(2x)− 1,

(3.6)

where 2σ(2x) is in range (0,2) , and the -1 centers the outputs between -1 and 1. It is
for this reason that tanh is favoured in the hidden layers over the sigmoid activation
in sequence models, as it is more resilient to vanishing gradients, since it saturates
slower than sigmoid and has higher gradients towards extreme values [11].

3.1.3.3 Rectified Linear Unit

RELU as depicted in Figure 3.2 is a modified linear activation, and only positive in-
puts cause the neurons to fire. All negative inputs are mapped to zero and the pos-
itive inputs to themselves so that RELU has range [0,∞). RELU is given by f (x) =

max(0, x). Because RELU activations do not explode exponentially, and it is very easy
to compute in both the forward and backward propagation, it has become the most
widely used activation function for deep learning models in domains such as image
classification. In cases where the target variable assumes both negative and positive



CHAPTER 3. FEED FORWARD AND RECURRENT NEURAL NETWORKS 14

values, RELU alone is unable to model negative values as an output activation, so it
is used in partnership with tanh or a linear activation. Most deep learning models
employ RELU between the hidden layers.

LeakyReLu’s formulation is given by f (x) = α × x, for x < 0, and f (x) = x, for
x >= 0, where 0 < α < 1. LeakyReLu a modified version of RELU that allows a very
small proportions of negative inputs to cause the neuron to fire and avoids the dead
RELU problem that occurs when positive weights and negative inputs always result
in a zero RELU activation and halt learning.

3.2 Recurrent Neural Networks
A RNN [58] is a specialized type of ANN that, unlike feed forward neural network
(FFNN)s, has recursive connections between its layers as shown in Figure 3.3. RNNs
are designed to handle sequential inputs in such a way that temporal dependencies
are preserved in memory and have an influence on later outputs in a time series re-
gression or classification task. RNNs have a recurrent connections in the hidden lay-
ers ht = f (xt, ht−1) that theoretically is able to recall all information from previous
time-steps. Owing to this attribute, RNNs are well suited for sequential data such as
text, audio and video comprehension where note and word probabilities p(yt|xt, yt−i)

for i = 1, 2, .., n are temporally conditioned on previous notes or words.

Figure 3.3: A recurrent neural network cell showing information flow over time. Source:[17]

The RNN architecture is in practice unable to learn long term temporal dependencies
due to vanishing error gradients in back propagation. In RNNs, error terms are not



CHAPTER 3. FEED FORWARD AND RECURRENT NEURAL NETWORKS 15

just propagated from output to input layer, but also through all time-steps by using
the back propagation through time (BPTT) [6] algorithm discussed in Section 3.2.1 to
follow.

Despite all its shortcomings, the base RNN still performes relatively well on tempo-
rally short sequence based tasks [58]. There are modifications to the standard RNN
cell and its training that overcome the RNN problems ranging from changing initiali-
zation methods, introducing non exponential activation functions such as RELU for
vanishing gradients, to entire reconstructions of the recurrent cell unit.

3.2.1 Back Propagation Through Time

BPTT [6] is a gradient based algorithm for training recursive models such as RNN.
The underlying concept in BPTT is similar to that of normal back propagation for
FFNNs. In BPTT, the RNN is unrolled in time, and each time-step has an input, hid-
den state and an output, all presented to the network in the order they appear in the
time series. The network shares weights across all time-step copies of the recurrent
cell. In the forward pass of data, the network is unrolled and time-step specific out-
put errors are calculated, the network is then rolled back up and the error terms are
accumulated to derive a common network error. As in standard back propagation,
the cost function must be expressible in terms of all the network weights, biases and
activation functions, and must be differentiable. Once the gradients are calculated, all
the weights are updated to minimize the cost. This process continues for n passes of
the training dataset (epoch), or until an acceptable loss is achieved.

BPTT is used extensively in most sequence based NNs, since it provides an efficient
way to calculate all the gradients in a complex objective. However, in cases where
the input or output sequences presented to the network are very long, gradients tend
to saturate and hinder learning. Truncated BPTT [13] is a variant of BPTT where
errors are not accumulated for the entire sequence in order for an update to occur.
Instead, a window is set where an update to weights in time-step ti depends only on
the gradients up to time-step ti+k, where k is a reasonably small window. This is done
to remedy vanishing and exploding gradients, while at the same time still allowing



CHAPTER 3. FEED FORWARD AND RECURRENT NEURAL NETWORKS 16

the network to not overlook any long term temporal dependencies in such a way
that learning gaps are created. The process of determining such a suitable window k
can be as difficult as determining the right hyper-parameters for a NN, and is problem
specific. The next section discusses a commonly used recurrent network called LSTM.

3.2.2 Long-Short Term Memory Neural Networks

LSTM neural networks were developed by Hochreiter and Schmidhuber [15]. An
LSTM cell is an architectural improvement over the standard RNN unit in that it has
gates that "decide" what new information from the current input step to include into
the hidden cell state, what information from the hidden state to forget, a layer that
aggregates all this information and acts on the other two layer’s decisions, and an
output layer similar to that of an RNN. These enhancements over the RNN cell en-
able the LSTM to better handle the vanishing and exploding gradient problem and
hence makes it better suited for music generation, since it is able to keep up long term
note and chord progression conditional probabilities during the training phase. In
the forward propagation, the following equations are iterated over per input time-
step t = 1, ..., T per training epoch:

ft = σ(W f [ht−1, xt] + b f ), (3.7)

it = σ(Wi[ht−1, xt] + bi), (3.8)

c̄t = tanh(Wc̄[ht−1, xt] + bc̄), (3.9)

ot = σ(Wo[ht−1, xt] + bo), (3.10)

ct = ftct−1 + it c̄t, (3.11)

ht = ot tanh(ct), (3.12)

where Wi and bi represent learnable network and bias weights respectively, ht and
xt represent the recurrent network’s hidden layer state and the current input respec-
tively. The σ and tanh are activation functions that were discussed in Sections 3.1.3.1



CHAPTER 3. FEED FORWARD AND RECURRENT NEURAL NETWORKS 17

Figure 3.4: An LSTM cell unrolled in time. Source: [17]

and 3.1.3.2 respectively.

Equation 3.7 decides how much of the information from previous states to forget,
Equations 3.8 and 3.9 together make up the gate that decides how much of the new
information from input xt to add to the cell state. Equation 3.10 decides which parts
of the cell state will be output by the network at time t. Equation 3.11 does the actual
update of the new cell state with a weighted sum of information to incorporate from
the previous cell state, and information to update from the proposed cell state. Finally
Equation 3.12, calculates the output at time t is the hidden state, which is a filtered
version of the cell state, filtered for what the network decided to output in Equation
3.10. Figure 3.4 shows the flow of information within an LSTM cell.

Although LSTM networks are known in theory to be able to prevent the vanishing
gradients, they still suffer to some extent from the same problem in practice. Efforts
have been made to remedy this through techniques such as stacking LSTM layers,
capturing both the forward and backward flow of input information (Bidirectional
recurrent neural networks [30]), creating peephole gates for more information reten-
tion, introducing skip connections over some LSTM layers [29], using specialized
non-saturating activations such as leakyRelu, discussed in Section 3.1.3.3, gradient
clipping to handle exploding gradients [51], adding an attention mechanism [25] and
pointer generator neural networks [26] in the encoder-decoder LSTM configuration
[14] discussed in Section 3.3, amongst others.



CHAPTER 3. FEED FORWARD AND RECURRENT NEURAL NETWORKS 18

3.3 Encoder-Decoder Models
Encoder-decoder RNNs [14] were designed to specifically address learning problems
where the input and output are sequences of varying lengths. The standard RNN
is unable to do this while conditioning the output sequence on the entire input se-
quence. The encoder-decoder models consists of two RNNs or LSTMs that are trained
together using a single objective function. The encoder learns to map variable length
inputs to a fixed length vector which is used by the decoder as initial input, and is
mapped to a variable length output. The encoder-decoder configuration of training
sequence-to-sequence models is well suited for tasks such as music composition [55],
text summarization [24], language text translation [20] and question answering where
the input and output are sequences that each have temporal dependencies.

3.4 Conclusion
This chapter has covered FFNNs, RNNs and the encoder-decoder training configura-
tion from a music generation perspective. Concepts such as activation functions, eval-
uation metrics, loss functions, regularization, and their properties were discussed to
support the choice of model architectural components used in Chapter 6 of this work.
The following chapter looks at how convolutional and adversarial neural networks
work and how they have been successfully used in the domain of music composition.



Chapter 4

Convolutional and Adversarial Neural
Networks

In this chapter, non-recurrent neural networks and adversarial training are discussed
with respect to how they adapt to temporal data. Section 4.1 covers CNNs, and Sec-
tion 4.2 discusses GANs.

4.1 Convolutional Neural Networks
Convolution is a mathematical operation that measures the amount of overlap be-
tween two functions f and g. CNNs derive their name from this operation and are
responsible for much of the recent successes in image recognition and video tagging
[66]. In a CNN, a kernel/filter f is slid over an image g, and a dot product is ap-
plied between elements of the image vector and those of the filter to learn convoluted
lower dimensional features that preserve the spatial relations between the pixels in
the original image. In this manner, the convolution operation is used to reduce the
dimensionality of the image by learning kernels with good overlap on the image.
CNNs may have one or more layers of convolution, pooling layers for dimensionality
reduction and non-linearity activation functions with trainable weights and biases. A
standard CNN is normally followed by a fully connected FFNN layers, and is trained
through back propagation.

19



CHAPTER 4. CONVOLUTIONAL AND ADVERSARIAL NEURAL NETWORKS 20

Figure 4.1: A time dilated convolutional neural network. Source:[19]

For music generation, CNNs are not as favoured nor suited as RNN and LSTM, as
they assume spatial rather than temporal dependencies in the input data. However,
CNNs are much easier to train since they have fewer parameters than RNN, FFNN
and LSTM networks with the same number of hidden units. This is because CNNs
have pooling layers that perform dimensionality reduction on the output of previous
layers and because a single small kernel is repetitively applied to the entire input. To
take advantage of the inexpensive training of CNNs for music generation, methods
such as conditioning each note on the previous output note [19, 46], treating a time-
frame of notes as an image and many more have been used [21]. For this study, only
those CNN architectures that archived results comparable to recurrent models are
discussed. One such model is Deepmind’s Wavenet [19] that uses time dilated convo-
lutions shown in Figure 4.1, to model conditional distributions of output frequencies,
in essence mimicking how RNNs work to some extent.

4.2 Generative Adversarial Neural networks
First introduced by Ian Goodfellow et al. [33], GANs are generative models trained
in an adversarial setting that aim to generate samples from an unknown distribution.
The GAN system trains two networks (the generator and discriminator) in a zero-sum
game fashion until a Nash equilibrium [31] is reached, where the generator generates
samples so realistic and similar to the unknown training distribution samples that the



CHAPTER 4. CONVOLUTIONAL AND ADVERSARIAL NEURAL NETWORKS 21

discriminator cannot tell them apart. The generator NN, x̄ = G(z) accepts a noise
signal z as input, and produces an output vector with the same dimensionality as the
data whose generative distribution is modelled. Figure 4.2 shows a CNN based GAN
used for image generation. The discriminator, D(x) takes real data x and the gener-
ator’s samples x̄ as input during training and models the probability distribution of
a sample belonging to the unknown real data generating distribution. The two net-
works are connected so that errors can be propagated back to the generator from the
discriminator. The discriminator is in essence trained like a classifier that can tell the
real and generated/"fake" data samples apart by producing a probability of an input
sample being drawn from the real data. The two standard GAN networks are jointly
trained over a minmax objective function given by:

minGmaxDV(D, G) = Ex∼PX [log(D(x))] + Ez∼PZ [log(1− D(G(z)))]. (4.1)

G(z) and D(x) can be any of the NN architectures mentioned in Sections 4.1, 3.2.2,
3.2, depending on the domain of application. For music generation, RNN and LSTM
are natural choices since they were designed to handle time series data such as music
notes. GANs are especially well suited for the task of music generation since they
are generative models and their ability to model note progression probabilities us-
ing only random noise in the generator enable sthem to exhibit more creativity than
FFNNs in their composition of audio sequences. However, GANs have been found to
be unstable in standard training, and convergence to equilibrium is not always guar-
anteed [43]. Since their introduction, numerous variants [35, 41, 42] of GANs have
been proposed that provide improvements in training simplicity and performance
over the original implementation. Ian Goodfellow et al. [44] later released a paper
on improved techniques for training GANs. This work focuses on Wasserstein GAN
(WGAN) due to its qualities and ease of training. WGAN is discussed in the next
section.

4.2.1 Wasserstein GAN

Wasserstein distance or earth mover (EM) distance is a measure of the amount of
work required to move one probability distribution to another. While traditional



CHAPTER 4. CONVOLUTIONAL AND ADVERSARIAL NEURAL NETWORKS 22

Figure 4.2: A generative adversarial neural network with convolutional neural networks in both the
generator and discriminator for handwritten digit image generation. Source: [18]

GAN seeks a density distribution Pθ that maximizes the likelihood of samples from
the distribution Pr to be modelled, WGAN minimizes the Kullback Leibler (KL) diver-
gence distance which is a reasonable approximation to EM distance [42]. EM distance
can be approximated by the equation:

W(Pr, Pθ) = inf
γinΠ(Pr,Pθ)

E(x,y)∼γ[||x− y||], (4.2)

which has properties that ensure convergence in situations where other distance mea-
sures fail to converge. An example is the case in traditional GAN where the support
of Pθ is drawn from a low dimensional latent space, which may intersect with that of
the real data generating distribution Pr to a significant enough degree, so that most
distance measures are invalid or are infinite. As a result of this, WGAN is much more
stable than GAN, and needs less architectural hyper-parameter tuning of the genera-
tor and discriminator.

It has also been shown that unlike GAN that suffers from a dominant discrimina-
tor, the EM estimation in WGAN benefits from constant discriminator improvement,
achieved by removing the sigmoid output activation that produces a probability of a
generated sample being real in standard GAN, and using a linear activation instead,
so that the distance between real and fake samples is as large and clearly defined as



CHAPTER 4. CONVOLUTIONAL AND ADVERSARIAL NEURAL NETWORKS 23

possible from the beginning of training. In WGAN, the targets are also labelled differ-
ently from GAN, -1 and 1 instead of 0 and 1 for fake and real data, respectively. This
has a benefit of leading to easy calculation of the loss. WGAN optimizes the following
objective function:

minGmaxDV(D, G) = Ex∼Pr [D(x)]− Ez∼Pθ
[D(G(z))], (4.3)

where Pr and Pθ represent the real and learned approximation of the data generating
distribution respectively. G(z) is the generator neural network, D(x) the discrimina-
tor, X and Z represent the real data sample and the latent sampling vector respec-
tively.

4.3 Conclusion
In this chapter, CNNs were breifly discussed followed by how their architecture have
been modified to be able to model temporal data through dilated convolutions. GANs,
which this work heavily depends on for the task of music generation, were also dis-
cussed. In the next section, music data representations commonly used for training
NN are discussed. The chapter places more emphasis on the MIDI data representation
which is the representation of choice for this dissertation.



Chapter 5

Data

Over the years, multiple musical representations for NN training have been proposed.
In this section some of the most commonly used representations are discussed and
motivation is given for the choice of data representation used for this work. In Sec-
tion 5.1, the ABC textual music representation, is briefly explained. This is followed
by a detailed discussion of the MIDI representation in Sections 5.2.

5.1 ABC
ABC notation is a simplified textual representation of music that uses letters: A to G
to represent notes. It also uses other ASCII special characters and numbers to repre-
sent music attributes such as note length, key change events and more complex note
behaviour. Because ABC is textual, when used as training data in neural music com-
position it is processed in a similar manner as natural language data. This means that
a word or character level embedding is created by training a shallow NN to predict
the characters or words surrounding a given word or character. The Word2Vec algo-
rithms [45] are commonly used for creating word and character embeddings.

Once the embeddings are created, they are then fed to a music generation learning
algorithm. However, training NN using ABC notation is more complex than using
MIDI because, apart from the fact that MIDI data is already in an easy to parse “key:
value” standardized format and ABC is not, ABC includes special characters such as

24



CHAPTER 5. DATA 25

“:, ], #, |, [, %, _” that do not form a part of the natural language and so pose a problem
during vector encodng using standard NLP tools. Also, because ABC to vector rep-
resentations are commonly performed on a character level, the embedding size can
be very large depending on the training corpus, making the entire training process
memory inefficient. Figure 5.1 is an extract of “Speed of the Plough’s” [71] ABC file
showing attributes: title, meter, key, default unit note length, each on a separate line
respectively. Note transcription begins with special character “|:”.

T:Speed of the Plough
M:4/4
C:Trad.
K:G
|:GABc dedB|dedB dedB|c2ec B2dB|c2A2 A2BA| GABc dedB|dedB dedB|c2ec
B2dB|A2F2 G4:| |:g2gf gdBd|g2f2 e2d2|c2ec B2dB|c2A2 A2df:|

Figure 5.1: ABC transcription of Speed of the Plough. Source: [71]. “|:” Is a repeat instruction until
a stop instruction “:|” is encountered.

5.2 MIDI
Musical instrument digital interface (MIDI) is a set of standards that outline how to
connect digital music instruments, so they can communicate using a messaging lay-
out that is standardized. These messages are termed MIDI messages, and encode
instructions that can be decoded to produce sound by any digital instrument that
conforms to the MIDI standard. The standard was drafted with simplicity and porta-
bility in mind, since a MIDI file does not contain the actual audio itself, but rather
instructions to synthesize the original audio. In terms of music, each song is en-
coded in its own MIDI file, with each instruction to the synthesizer contained in a
MIDI message. There are several MIDI message types: “note on” messages, “note
off” messages, meta messages, control change messages, program change messages,
and tempo change messages.

To assemble a fully functional MIDI file, all these messages are required, but for the
purpose of modelling note progression and suitability to evaluate the model’s ability



CHAPTER 5. DATA 26

Channel Note Time Type Velocity
0 39 0 note_on 80
0 58 0 note_on 80
0 46 0 note_on 80
0 61 0 note_on 80
0 70 0 note_on 80
0 70 240 note_off 64
9 39 0 note_on 80
9 39 480 note_off 64
1 46 0 note_on 80
9 58 0 note_on 80

Table 5.1: A sample MIDI file with note action messages presented in tabular form. The “Note”
column represents pitch. Each of the file attributes listed in the table are discussed below.

to generate audio, “note on” and “note off” messages on their own are sufficient, with
other messages being set to default values. Each note event message contains several
attributes that accompany it. Table 5.1 shows how note action messages are stored in
a MIDI file.

As stated in Section 5.1, ABC vector representations are very large in size depending
on the training corpus, making the training processes memory inefficient. This is not
the case with MIDI since each pitch value can be represented by a binary encoded
vector of length 128. Also, using ABC representation of music requires pre-training of
the character embeddings, while this is not the case with the vector representation of
MIDI data. These reasons have led to the use of MIDI and not ABC music data repre-
sentation in this work. Subsections 5.2.1 to 5.2.4 below explain the four key attributes
used in encoding each MIDI note message.

5.2.1 Channels

There are 16 available independent channels numbered from 0 to 15, through which
each MIDI message can be transmitted to a MIDI enabled device. Each channel trans-
mits messages from one or more tracks to a single musical instrument. Because the



CHAPTER 5. DATA 27

channels are independent, multiple instruments can be played at the same time at
different levels of loudness and varying tempos per channel. “Programme change”
messages are used to switch between channels while transmitting messages.

5.2.2 Pitch

The pitch of a note, arguably the most important attribute in a musical piece, refers to
the discretized frequency of sound produced by an instrument. The pitch attribute in
a MIDI file assumes discrete values in the range [0,127]. Musical pitches are ordered
and are identifiable in groups as low, middle or high pitches to the human ear. The 128
pitches are organized into 16 octaves with each pitch in an octave assigned an alpha-
bet A to G in terms of ABC music notation discussed in Section 5.1. For the purpose
of this study, only pitch progression and note message type are estimated, and the
rest of the attributes are fixed. This is because note progression is a key determinant
in the perceived quality of music generated.

5.2.3 Velocity

The velocity of a pitch refers to the force at which it is played. In terms of a physical
piano, for example, differences in velocity on the same pitch would mean pressing the
same key harder on one instance and softer on the other, hence creating two different
levels of loudness. Velocity in MIDI takes on integer values from 0 to 127, where 0 is
inaudible/silence and therefore can be used to represent a note-off event.

5.2.4 Time

The duration which each note holds is implicitly encoded in the MIDI message as
delta time. This refers to the uninterrupted time between messages on a note of the
same pitch. As a result, the duration of each note is determined by the delta time (in
number of ticks) in its note-off message. The timing of each note is relative to all note-
on and note-off messages of the same pitch and channel that precedes it. Although
two MIDI files can have the exact same “note on” and “note off” messages including
delta times, they can sound very different during playback due to the tempo messages



CHAPTER 5. DATA 28

in the header and tempo change messages. As such, it is important to note that delta
time depends on tempo. The tempo sets the pace of the song. The algorithm explained
in Section 6.1 is used to normalize delta time for all MIDI files with different tempos.

5.3 Dataset
Since MIDI files are compact relative to the raw audio represented, there are numer-
ous training dataset sources available online to choose from for the task of neural mu-
sic generation. The Lahk MIDI dataset [72] is one of the most commonly used for this
purpose. The dataset is a collection of 176,581 unique MIDI files of different genres
and composers. Of the seven versions of the dataset, the "clean MIDI subset" ver-
sion containing 17,257 song with filenames indicating song titles and artist was used.
This dataset is of size 224MB compressed and 770MB uncompressed. Due to mem-
ory constraints, only 289 distinct polyphonic songs from 10 composers were used for
training comprising only 10MB of disk space. Table 5.2 gives a statistical summary of
the training data used for the different composers.

Composer Number of Songs Number of Notes

Beethoven 29 158 978
Billy Joel 117 947 296
Borodin 7 24 260
Diana Ross 3 39 022
Elton John 31 330 044
Elvis 5 29 776
Frank Sinatra 45 268 180
Liszt 16 53 366
Mendelssohn 15 79 516
Mozart 21 81 470
Total 289 2 011 908

Table 5.2: Training dataset description by composer. Number of notes represent both note on and off
messages



CHAPTER 5. DATA 29

5.4 Conclusion
In this section, common music data representations used in note progression mod-
elling for music generation were discussed, and emphasis was placed on the MIDI
representation that is used in this work. In the next chapter, the methodology fol-
lowed for the study is discussed.



Chapter 6

Methodology

This section covers the procedure for representing the MIDI data in a binary note
state-matrix suitable for NN training in Section 6.1. This is followed by a discussion
on the architectural details of the two generative models implemented in Section 6.2,
and finally the evaluation methodology is discussed in Section 6.3.

6.1 Midi State-Matrix Representation
The note progression state-matrix representation algorithm used in this work is adop-
ted from [40]. It takes a standard MIDI file as input and transforms the “note on” and
“note off” messages into a matrix of binary entries. In this representation, only infor-
mation pertaining to note messages is kept, that is, whether a note is on or off, the
timing and duration of the note. The algorithm consists of two separate processes,
one for encoding a MIDI file into the note state-matrix representation, the other for
decoding and transforming an existing note state-matrix into a valid MIDI file that
can be transcribed by any MIDI enabled device. The encoding and decoding pro-
cesses are discussed below.

6.1.1 Encoding

Starting with a MIDI file with textual and numerical data, the aim is to extract and
transform into binary all note information to be used as training data for music gen-

30



CHAPTER 6. METHODOLOGY 31

(a)

Figure 6.1: Visualization of sample MIDI files in the note state-matrix representation.

eration. For each file, all messages relating to the same pitch are first lined up in as-
cending order of their delta times as defined in Section 5.2.4, with each present pitch
having a list that starts at tick time 0. Adding up all the delta times on the pitch that
plays last in the song produces the duration of the song. From the assembly of mes-
sages per pitch present in a song, three important attributes, namely pitch, time and
note message type, are extracted and used to create the state-matrix representation of
the song.

Extracting the pitch and note message type are fairly straightforward orparations
since they are explicitly contained in each of the ordered messages. The M × 2N
matrix is constructed so that the M rows represent tick times. Of the 2N columns
representing the pitch information for N possible pitch values, the first N columns
uniquely identify each pitch value, and the next N indicate whether the pitch was
played in the previous time step or not. N represents the number of possible pitches
which is 128 by default. The entries into the matrix are binary to indicate the state
of the note at each tick time on all pitches. Figure 6.1 is a binary heat map of the
state matrix representation. This representation allows for easy expression of multi-
ple chords, hence the models will be able to learn polyphonic note progressions. One
complication with the state matrix representation is that it creates an imbalance in the
prediction space. This is because each time-step in the matrix contains a very small
proportion of note-on signals as compared to note-off signals for the 128 available
pitches. Table 6.1 shows the proportion of prediction instances representing positive



CHAPTER 6. METHODOLOGY 32

note activations and negative activations for the training dataset used in this study.

Note message type Number of note messages Percentage

Note-off 5 924 916 96,63%
Note-on 199 884 3,37%
Total 6 124 800 100%

Table 6.1: Number of prediction instances/note messages in the training dataset showing the data class
imbalance inherent in the state-matrix representation used in this work.

Owing to the imbalance shown in Table 6.1, a model that simply predicts note-off
messages for all 128 pitch values at each time step will achieve an accuracy score of
approximately 96%. BAcc, which is calculated as the weighted prediction accuracy
between the number of prediction classes, is not prone to the same problem as predic-
tion accuracy, and so it is used in this work. To create the training dataset, all training
and test MIDI files are passed through this process to create a collection of note pro-
gression state matrices, which results in a three dimensional matrix. This is ideal since
the models explained in Section 6.2 expect a three dimensional input.

6.1.2 Decoding

The decoding of a note state-matrix is the reverse process of the encoding process,
and as such is highly dependent on it. This process accepts a binary state-matrix of
dimension defined in the encoding phase, as input, and transforms the matrix into
a valid MIDI file. Without this process, it would be hard to evaluate the quality of
audio samples generated by both the encoder-decoder and WGAN models discussed
in Section 6.2.

To be able to generate a valid transcribable MIDI song, each observation in the state-
matrix is written as a note message in the MIDI file comprising the following at-
tributes as a minimum requirement: channel, pitch, time, and velocity as explained
in Chapter 5. Note message type is also a necessary attribute for valid MIDI tran-
scription. For playblack purpose, a meta tempo message is also sent to the file before



CHAPTER 6. METHODOLOGY 33

all other note messages. However, the models compared in this work only model
pitch progression states, and so the velocity, channel and playback tempo are kept
constant at 70, 1 (Acoustic Grand Piano) and 120 respectively to ensure the audio is
loud enough and of standard pace. Delta time of each message is calculated based
on the number of ticks between the current message and the previous message of the
same pitch, scaled on the constant file tempo. In the case that an observation in the
state-matrix representation contains information about more than one pitch, multiple
MIDI messages are generated from this one observation with the same delta time. The
time attribute dt,s for pitch s is extracted only after all note progression states in the
matrix are determined using the formula below:

dt,s =
υst − υs(t−1)

τ
, (6.1)

where υst is the tick time of the current message containing instruction for state s,
υs(t−1) is the tick time of the previous message containing information on the same
state, and τ = 120 represents fixed standardizing tempo.

Decoding pitch is more complex than all the other required attributes. In the note
state-matrix representation of binary entries, the first N − 1 columns represent pitch
activations and the next N to 2N − 1 represent pitch retention of each observation.
A value of 1 in the first N − 1 columns is recorded as a “note_on” message, and a
value of 0 denotes a “note_off” message for the pitch encoded by the column. In the
next N to 2N − 1 columns, a value of 1 instructs the MIDI transcriber to activate the
corresponding pitch in column in the first N − 1 columns, while a value of 0 releases
the pitch. Activations of a pitch of constant velocity for continuous time steps until
release constitute an elongated pitch press to a human listener.

When the state-matrix attributes have been extracted and written to a MIDI file, The
decoding process assumes a MIDI file type 1, where all messages are written to one
track.



CHAPTER 6. METHODOLOGY 34

6.2 Models
In this section, the encoder-decoder and the adversarial generative models are pre-
sented in Subsections 6.2.1 and 6.2.2 respectively. Their architectures are explored
together with some of the key structural training parameters such as activation func-
tions, number of stacked LSTM layers, and optimizers used. Since the training con-
figurations are different, the last part in each configuration explains how the pre-
processed note state-matrix data is presented to the network for training.

6.2.1 Encoder-Decoder LSTM

The encoder-decoder configuration [14], is well suited to the modelling of sequential
tasks such as text translation, textual question answering, text summarization and
music generation. In this configuration, two networks joint end to end with only one
objective function are trained so that the first network (encoder) is fed all the training
sequences and encodes what it has learned in a low dimensional vector. The decoder
then learns the mapping from this encoded “thought vector” to the desired sequence
of outputs. The decoder does this by optimizing a loss function, and is trained us-
ing BPTT explained in Section 3.2.1. Since the two networks are connected, gradients
from the decoder are propagated all the way back to the encoder, so the encoder also
improves its encoding process.

It has been shown that stacking LSTM cells results in improved performance [37, 39],
and so three stacked LSTM cells in both the encoder and decoder networks were
implemented. The reason for stacking LSTM layers is to capture multiple levels of
abstraction that could be inherent in the temporal data. For music generation, the
sequence of note information encodes not just note progressions per track, but also
chord progressions and phrases that contribute to the rhythm and melody of the input
and output. Capturing both the forward and backward flow of input during encoder
training has shown to significantly improve the cell state’s memory retention and sub-
sequently the quality of generated sequences [30, 39] by the decoder. For this reason,
one of the encoder layers will read the input sequence backwards, the other forward,
and the third takes the aggregation function a(h1, h2) result of the other two layers’s
hidden states as input to finally produce the final hidden state VT = θ3(a(~h,~h)), where



CHAPTER 6. METHODOLOGY 35

θi(.) comprises all LSTM equations in Section 3.2.2. Figure 6.2 shows bidirectional
stacked encoder network. This bidirectional input approach was succesfully imple-
mented for music generation in [37] and [38].

Figure 6.2: The encoder bidirectional LSTM network. Inputs St+i represent note pitch information
per timeseries observation (tick) pulled from the 2D note progression state-matrix

The first two LSTM layers can be considered to be on the same hierarchical level,
hence making up just a single bidirectional layer. The third LSTM is stacked over the
bidirectional layer. Aggregation function a can either be a summation, multiplication
or concatenation operation over the hidden states of the forward and backward read-
ing LSTM cells. Each LSTM cell internally consists of standard LSTM operations.

The decoder comprises of three stacked unidirectional LSTM cells with 256 neurons
each, and sigmoid output activation. Unlike the encoder, the decoder is used in two
modes, notably: training and inference. These two modes differ by the manner in
which information flows from input to output until termination of decoding. Dur-



CHAPTER 6. METHODOLOGY 36

Figure 6.3: The decoder unidirectional LSTM network.Inputs St+i represent note pitch information
per timeseries observation (tick) pulled from the 2D note progression state-matrix.

ing training, the decoder hidden and cell states are initialized using the encoder’s
final states. Since an LSTM cell expects three inputs, a zero vector st0 = 0̄ is pre-
sented as a primer to the decoder, and the first predicted note progression state ŝt1 is
generated by the network. During training, the real musical note progression states
stt, stt+1, ..., stt+n−1 are presented as input per time step to predict the orderly se-
quence of note progression states ŝtt+1, ŝtt+2, ..., ŝtt+n.

As in all other optimization based networks, the predictions ŝtt+i are compared to
the actual note states stt+i to calculate the loss. The RMSprop [32] optimizer is used
to minimize the overall encoder-decoder network cross entropy objective given by
Equation 3.2. RMSprop is the recommended choice for training RNNs according to
Keras [64] as it speeds up training, and has been successsfully used in training RNNs
on temporal data [27, 50, 65]. Once training is completed, a short sequence of notes
is presented to the encoder which passes on a low dimensional vector representation
of its final hidden state to the decoder. Inference proceeds with a primer input, first



CHAPTER 6. METHODOLOGY 37

note state prediction is passed as input into the decoder in the next time-step, and
the process continues recursively until the desired number of time-steps of output is
reached as depicted in Figure 6.3. In all the LSTM cells, dropout, discussed in Section
3.1.1.2, is used for regularization. Since each song is represented by a T × 2N, where
T represents number of ticks/time-steps and N the number of allowable pitches to
model, all LSTM cells have layers containing 2N hidden units. The algorithm used
for extracting note information from the MIDI file and create the note state-matrix
representation was discussed in Section 6.1.1.

Encoder-decoder networks are sequence-to-sequence models, and so accept a sequence
of priming notes in order to be able to produce an output sequence. In music gener-
ation, as in any other sequence-to-sequence task, the more data presented to the en-
coder network, the better the quality of information available to the decoder network.
However, longer sequences can have negative effects on learning due to vanishing
gradients. For encoder-decoder music generation, all songs are limited to N ticks; m
of these, where m < N, are presented to the encoder and n, with m < n < N, to the
decoder during training. Note that m + n = N. All training songs are split in this
manner and presented to the network in batches of eight. During inference, the net-
work expects a primer sequence of m notes and generates n note progression states
probabilities, and a threshold value of 0.5 is used to turn notes on. The threshold is
set to 0.5 because the values being predicted are probabilities of a note being played.

Once there is a sequence of notes generated, it is presented to the MIDI note state-
matrix decoding method in Section 6.1.2 to produce a MIDI file that can play on any
MIDI enabled device. In the following section, the WGAN implementation is dis-
cussed.

6.2.2 LSTM WGAN

As mentioned in Section 4.2.1, WGAN is an improvement over standard GAN train-
ing. The WGAN implementation in this work consists of an LSTM generator and
discriminator. Since the goal is to compare adversarial training to encoder-decoder
configured training, both the generator and discriminator network architectures are
identical to the decoder and encoder respectively in terms of the number of LSTM



CHAPTER 6. METHODOLOGY 38

layers, number of neurons in each layer, and activation functions except for the out-
put activation. Other training hyper-parameters such as learning rate and stopping
criteria are left to vary per training configuration, and will be discussed in Chapter 7.
Below is a detailed description of the WGAN implementation used in this study.

The generator G(z) in WGAN is similar to any other generative model that generates
melodies from random noise. The specific implementation in this study has three
stacked unidirectional LSTM layers with 256 neurons in each layer, an input layer, a
fully connected layer before the output, and an output layer. The input layer accepts
a matrix of latent variables of size 256 for each generation time-step from a the stan-
dard normal distribution with a mean of zero, and a standard deviation of one. The
first LSTM layer takes this latent matrix as input per time-step and passes the infor-
mation on to the higher layers, and the state output per time-step is passed on to the
next time-step to generate a sequence of outputs. The outputs should transform into
realistic note state-matrix probabilities over the course of training. The output of the
generator network is forced to have the same dimensions as those of the state-matrix
representation of the real data.

In traditional GAN training, the discriminator D(x) is an adversary to G(z) as they
are trained in competition. The D(G(z)) in WGAN acts more in partnership with
G(z) in that, D(G(z)) is trained to optimality much faster than G(z), and so D(G(z))
is able to provide important loss information to G(z) very early in training to speed
up G(z)’s convergence. In this manner it is more comparable to the encoder-decoder
network in encoder-decoder models explained in Section 6.2.1 in that it provides the
necessary information for the generator’s optimal training. The D(G(z)) implemen-
tation has the same number of LSTM layers, including one bidirectional layer as the
encoder, discussed in Section 6.2.1. The network expects input with dimensions con-
sistent to the note state-matrix representation of the MIDI files, and produces a scalar
output to ensure the distance between real and fake sample outputs is as large as pos-
sible. This is unlike traditional GANs that produce a probability that the song is a
sample from the real data generating distribution. For this purpose a linear output
activation function is used for D(G(z)). The scalar output helps in calculating the EM
distance defined in Section 4.2.1, which is used in D(G(z))′s and G(z)′s loss functions.



CHAPTER 6. METHODOLOGY 39

The discriminator takes both real note samples and random noise as inputs together
with their labels; 1 for real and -1 for fake samples.The random noise is passed through
a partially trained generator at that point in time for each epoch, and the resulting
samples represent generated music. To ensure D(G(z)) is always more informed than
G(z) to be able to guide G(z)’s loss to optimality, D(G(z)) is trained five times more
for every single epoch of G(z). Figure 6.4 shows the structural setup of the WGAN
configuration with D(G(z)) and G(z) as explained above applied on image genera-
tion.

Figure 6.4: WGAN architecture for image generation. Source: [68]

6.3 Evaluation Methods
In machine learning, it is common to measure the training and validation accuracy of
a model and use these for model evaluation. In this work, the training and valida-
tion errors of the models were recorded and will be reported in Chapter 7, however
they are not a good measure for the performance of a generative algorithm. In gen-
erative models, the goal is to be able to learn the generative distribution underlying
the samples used during training, while at the same time not overfitting on these few
examples. This means that it is possible to have a model that has average training



CHAPTER 6. METHODOLOGY 40

and validation accuracies produce much more realistic and creative musical samples
than one with a very high training accuracy, as music is an art form and is very sub-
jective. Majority of existing literature in neural music generation relies on subjective
evaluation methods, with human listener surveys being the most common approach
[19,37,55,67]. For this study, a survey was conducted where listener impression scores
from 10 individual volunteers were collected. The scores give a subjective opinion of
the listeners impression of the samples generated by both the encoder-decoder and
the WGAN generators.

The 10 human evaluators of the samples were chosen at random from a group of
friends and each was contacted through Whatsapp [63] messaging to be asked to par-
ticipate in the study. This method of contact was especially suitable, as it allowed
for quick and easy access to individuals that would likely agree to participate in the
study. The fact that the social messaging application has functionality for sharing au-
dio was also one influential factor for the choice of survey design. All the volunteers
were aged between 20 and 40 with an uneven split of gender (6 male, 4 female). They
were notified that they will receive eight distinct pairs of audio samples not longer
than 2 minutes in length that are both generated by a learning algorithm. They were
then asked to rate each of the samples by giving it a score in the range [0, 5], (where
0 is completely random noise and 5 is a good song), to express how much they en-
joyed listening to the song and how rhythmic and melodic the music samples are. A
numerical score was collected for each sample in the comparison pair. This enabled
calculation as a percentage of the number of times samples from one model are pre-
ferred over those from the competing model. This together with the median represent
a good measure of centrality of the scores to ensure the analysis is not influenced by
outliers.

Each participant received a group of eight randomized pairings of encoder-decoder
and WGAN samples to compare and score, resulting in a total of 80 ratings. Microsoft
Excel was used to randomize the samples and to assign them to the volunteers. The
importance of mentioning to the volunteers that both samples were algorithmically
generated was to ensure they do not score the samples by comparing them to what
they define as really good music generated by expert human artists. This ensures
they understand the aim of the study is to compare music samples from two gener-



CHAPTER 6. METHODOLOGY 41

ative models. The voluntees were not informed as to which samples were generated
by which model. Some of the volunteers, although not asked, were able to provide
textual explanation for their preference in the samples, which provided for a better
comparison of the two generative models. Once the scores were collected, the mean
opinion score (MOS) [62] test was conducted to get to the conclusion that answers
the research questions. For each WGAN sample Sw

i and encoder-decoder sample Sed
j ,

MOS q(S) over all 10 volunteer ratings rk(S) is defined as:

q(Si) =
1
10

10

∑
k

rk(Si), (6.2)

where the rating rk(si) is the rating given to sample Si by volunteer number k of 10
volunteers.The mean generator quality Q(Sg) of a group of samples from the same
generator g, is defined as the average MOS given by Equation 6.3 below:

Q(Sg) =
1
8

8

∑
i

q(Sg
i ), (6.3)

where Sg
i for i = 1, 2, 3, ..., 8 represents samples from generator g. Since there is subjec-

tivity in the measure of quality, it is important to quantify how much variation there
is in the recorded sample and model qualities using the standard deviation. This also
expresses how much confidence is placed in the estimate of quality used, where a high
standard deviation represents low confidence in the accuracy of the estimate, and a
low deviation represents high confidence. The two standard deviation estimates for
MOS and mean generator quality are expressed below respectively:

σq(Si)
=

√
∑10

k (rk(Si)− q(Si))
2

10− 1
, (6.4)

σQ(Sg) =

√
∑8

i (q(S
g
i )−Q(Sg))2

8− 1
, (6.5)

with q(Si) and Q(Sg) given by Equations 6.2 and 6.3 respectively. Although one gen-
erator may have a higher MOS than the other, tests have to be performed to ensure the
MOS estimate of quality is not negatively influenced by outliers, and that it indeed
has a different and higher median opinion score. The Wilcoxon signed-rank t-test [73]



CHAPTER 6. METHODOLOGY 42

was used to perform the test of equal medians in ranked pair data, discussed in the
next section.

6.3.1 Wilcoxon Signed-Rank T-Test

The Wilcoxon signed-rank t-test [73] is a statistical hypothesis test for ranked and
paired data that assumes no predefined population distribution over which the data
is sampled from. Wilcoxon signed-rank t-test is used for comparing related pair sam-
ples under the hypothesis that the median difference between the samples is zero.

The test makes the following assumptions about the data:

• The data observations are paired samples from the same population.

• Each pair is chosen randomly and independently.

• The observations are measured on an ordinal, not necessarily nominal scale.

The assumptions above are met by the opinion score data collection process to a suit-
able extent in that: (1) the ranked samples come from the same population of ranking
volunteers. (2) The pairs were chosen randomly, though independence in this case is
subjective as it is important to ensure all samples from both models were evaluated
by the same number of volunteers. This was achieved by random selection without
replacement. (3) Although the scores indicate by how much one sample is better than
the other, hence violating the ordinallity assumption, a transformation is applied to
the scores to ensure only the ordinal aspect of the scores is used. In this transforma-
tion, the score pairs are compared, and a new indicator feature is constructed that
assumes the following values: positive (+) if the second sample has a higher score,
zero if the scores are tied, and negative (-) otherwise. With this new signed trans-
formed data, all the test assumptions are satisfied.

The null and alternative hypothesis are given by:

H0: The median score difference between the paired samples is zero.
H1: The median score difference is not zero.



CHAPTER 6. METHODOLOGY 43

Let ed and wg represent the encoder-decoder and WGAN models respectively and
sgn represent the sign function. With data observations sgn(red,i − rwg,i), all tied pairs
are excluded from the initial sample of size N to a reduced test sample of size Nr. The
original sample pairs are ordered in ascension according to the absolute differences
red,i − rwg,i of the original captured scores with the smallest difference ranking first as
1 and all ties receiving the average rank of the positions they span. With these new
pair ranks Ri, the Wilcoxon signed-rank t-test statistic is calculated as follows:

W =
Nr

∑
i
(sgn(red,i − rwg,i) · Ri). (6.6)

Note that using the reduced sample size Nr is equivalent to using the original sample
size N, since all tied pairs will result in a zero sign hence not contributing to W. For
Nr ≥ 10, W is asymptotically normally distributed, thus the z-score can be calculated
as follows:

z =
W − 0.5

σW
, (6.7)

with:

σW =

√
Nr(Nr + 1)(2Nr + 1)

6
. (6.8)

The null hypothesis H0: equal medians is rejected in favour of H1: unequal medians,
if z > zcritical. Rejecting the null hypothesis would mean the two models have gen-
erated sample scores with statistically different medians, and so there is more confi-
dence that the contribution of outliers in the mean model and opinion scores is trivial.

Based on the results of the MOS’s, mean generator quality, and the Wilcoxon signed-
rank test, the generator with the higher mean generator quality will be considered
to produce music that is more aesthetically pleasing to listen to, given the null hy-
pothesis of equal medians is rejected. The volatility estimates given by Equation 6.5
are used as a measure of the confidence in making the conclusion based on the MOS
estimates above. The textual comments collected on some samples will be analysed
to get more insight into how people perceived the music. However, due to the lack
of correct collection of these comments, no computational sentiment analysis will be



CHAPTER 6. METHODOLOGY 44

done on the data, but a human opinion sentiment analysis of the text will be provided.

6.4 Conclusion
This chapter discusses the two generative models being compared in this study, namely
the encoder-decoder and WGAN. The chapter concludes by explaining the methods
of evaluation to be used in getting to a conclusion for the study. In the next chapter,
the training and evaluation experiments are discussed.



Chapter 7

Experiments

In Chapters 5 and 6, the data and all implementation methods were explained. In
this chapter, the experimental processes followed to produce the results that address
the main questions of this study are presented. In Section 7.1, implementation con-
figurations of the MIDI state-matrix representation are briefly discussed, followed by
a discussion on the training parameters for both generative architectures in Section
7.2. Finally, Section 7.3 is focused on the generation of music samples used in evalu-
ating the encoder-decoder and WGAN models. All computation relating to the data
and models was performed on a 7th generation core I5 intel processor, two Gigabytes
Nvidia GeFORCE GPU personal computer with 8 Gigabytes of RAM and a Terabyte
of ROM.

7.1 MIDI Representation
Of the 128 possible pitch values, existing implementations use only 88 pitch values
between 21 and 109 since all other pitches outside this range are inaudible to the hu-
man ear. This in effect reduces the state-matrix dimensionality, and overall model
complexity. In this work, all 128 pitch values are used to avoid the added pre-and-
post processing in using a reduced note representation. For the models trained below,
changing from 88 pitch values to 128 pitch values had an increase in model param-
eters of only 16% and 22% for the WGAN and the encoder-decoder models, respec-
tively.

45



CHAPTER 7. EXPERIMENTS 46

7.2 Model Hyper-Parameters
Below is the final list of models training hyper-parameters used in the study. A brief
explanation of how they affected learning then follows per model.

7.2.1 Encoder-Decocer

The training hyper-parameters for the encoder-decoder LSTM neural network are
shown in Table 7.1.

Hyper-parameter Value
Learning rate 0.001
Optimizer RMSprop
Dropout Probability 0.2
Training epochs 300
Batch size 5
Hidden layer size 256
Gradient clipping max 2.0
Train test split 80:20

Table 7.1: Training hyper-parameters for the encoder-decoder neural network.

Batch Size
Learning Rate 5 8 10

0.0005 71.2% 56.6% 51.1%
0.001 74.1% 69.6% 60.3%
0.005 73.6% 73.2% 72.8%

Table 7.2: Mean 5-fold CV balanced accuracy scores.

The learning rate was set low to ensure smoother tracking down the loss function as
higher learning rates tend to converge quicker, but the quality of music generated was



CHAPTER 7. EXPERIMENTS 47

bad hinting at convergence to a local minimum. Dropout [10] as a regularization tech-
nique added more training stability and reduced overfitting. Other parameters such
as gradient clipping and batch size were determined using five-fold cross validation
with all other parameters fixed. Table 7.2 shows mean BAcc scores over the five-fold
cross validation (CV) for different learning rates and batch sizes. The model’s train-
ing mini-batch size and learning rate were closen from the 5 fold CV parameter search
shown in Table 7.2, and they are the values that achieved the highest BAcc score.

7.2.2 WGAN

Table 7.3 shows the final training hyper-parameters for both the generator and dis-
criminator LSTM networks of the WGAN.

Hyper-parameter Value
G(z) learning rate 0.00005
G(z) optimizer RMSprop
G(z) epochs 4000
G(z) batch size 32
z distribution Standard normal
D(x) learning rate 0.00005
D(x) optimizer RMSprop
D(x) : G(z) epoch ratio 5:1
Gradient clipping 0.01

Table 7.3: Training hyper-parameters for the WGAN model.

Training the WGAN has more moving parts than the encoder-decoder model. The
initial training parameters were adopted from Gulrajani et al [44], and then a grid
search was used to fine tune the hyper-parameters over 200 epochs. Figure 7.1 shows
loss curves for both G(z) and D(z) for different points in the hyper-parameter grid
search space. The combination of parameters that led to stable training were chosen
as the final training parameters shown in Table 7.3.



CHAPTER 7. EXPERIMENTS 48

(a)

Figure 7.1: The figure above shows G(z)’s and D(x)’s training losses for 12 grid search points, where
the number of critic training epochs (n_critic) and batch size are varied. Top: Loss curves for batch
size = 32. for n_critic = 2, 5, 10 and 20 Middle: Loss curves for batch size = 64. Bottom: Loss curves
for batch size = 128.



CHAPTER 7. EXPERIMENTS 49

At the start of training the generator takes Gaussian noise together with the discrimi-
nator’s critic of the generated samples. During this initial training the discriminator’s
layers are fixed and not trained to ensure the generator learning has started by the
time the discriminator is trained to optimality. For each epoch of the generator, the
discriminator is trained for five times more epochs, then it is used to critic the gener-
ator at its current competence level.

Since the RMSprop optimizer [32] is used, the learning rates for both the generator
and discriminator decay with the number of epochs. This is to force the generator to
value learned signal more than temporary noise caused by sudden inconsistent gra-
dient direction changes. Training of the WGAN model was faster than that of the
encoder-decoder model and had fewer combined generator and discriminator train-
able weights. This is because there is no transfer of LSTM cell and hidden states
between the generator and discriminator unlike there is between the encoder and de-
coder networks. The WGAN networks are connected only by a scalar loss for infor-
mation transfer. The generator and discriminator are not trained to optimize accuracy
since the aim is not regenerating any song from the training set, and so the losses are
rather similarly to the MSE loss. The early stopping criteria for training was set to be
when the EM distance between the current generator’s learned distribution and that
of the real data stops reducing for any 10 consecutive epochs.

7.3 Music Generation
For the encoder-decoder model, music is generated one sample at a time at the end of
training by priming the decoder network with a short series of notes and predicting
the note progression probabilities for the entire song. The generated samples are on
average 1.3 minutes long. It turned out that generating melodies that are much longer
than 2 minutes resulted in repetitions of the same sequence of notes and sometimes
silent spots or complete silence towards the end of the song.

For WGAN, samples are generated during training. At the end of each generator
training epoch, a sequence of ten priming latent vectors are passed to the generator,
and it then generates ten audio samples based on its proficiency at that point in time.



CHAPTER 7. EXPERIMENTS 50

This process is repeated until training is complete, resulting in a number of music
samples. If training progresses as expected, the samples reflect an increase in compo-
sitional skill from epoch one to the last epoch. Only randomly selected samples from
the last generator training were collected and written to a MIDI file for evaluation.

7.4 Conclusion
This chapter covered the experimental set up, starting with MIDI data representation,
followed by a discussion on how the encoder-decoder and WGAN model architec-
tures and hyper-parameters were set. The process of producing music samples from
both trained models was then discussed in Section 7.3. In the next chapter, the exper-
imental results are presented and analysed.



Chapter 8

Results and Analysis

The previous section presented experiments on training the two models together with
the music composition process and evaluation of music samples from the trained
encoder-decoder and GAN models. Here, the results from these experiments are dis-
cussed. The training, validation and test errors are discussed in Section 8.1, followed
by reporting and analysis of the mean opinion scores of samples from the two models
in section 8.2. Section 8.3 covers the Wilcoxon signed-rank t-test used in comparing
sample medians, and finally, listener impression comments are presented in Section
8.4.

8.1 Training and Test Results
A model’s predictive accuracy is a quantitative measure of the number of prediction
instances the model estimated correctly divided by the total number of prediction in-
stances as a percentage. In the case of musical notes, accuracy is measured as mean
number of notes correctly classified as on or off per time step. The accuracy is mea-
sured during both training and validation of the model to ensure it is not over-fitting
and is generalizing well. This is measured on the validation set. The table below
shows the loss and accuracy scores for the encoder-decoder model together with the
WGAN’s EM distance loss, which like the MSE loss, has only a lower bound of zero
and no upper bound.

51



CHAPTER 8. RESULTS AND ANALYSIS 52

WGAN LSTM Encoder-Decoder LSTM

Training Accuracy - 96,45%
Test Accuracy - 96,3%
Training entropy loss - 0.107
Test entropy loss - 0.081
Generator loss 1.0006 -
Discriminator loss 0.9995 -

Table 8.1: Training and test accuracies.

CV Iteration Training BAcc Validation BAcc Training loss Validation loss

1 74.16% 73.84% 0.64% 0.78%
2 74.27% 74.66% 0.65% 0.30%
3 74.75% 74.78% 0.29% 0.16%
4 74.34% 74.24% 0.61% 0.67%
5 74.61% 74.09% 0.31% 0.46%
µ 74.42% 74.32% 0.5% 0.48%
σ 0.24% 0.39% 0.18% 0.25%

Table 8.2: Training and five-fold CV balanced accuracy scores for the encoder-decoder LSTM neural
network.

Although the prediction accuracy reported in Table 8.1 seem favourably high, they are
a bad measure of the generative ability of the encoder-decoder model on the training
data. This is because there are more negative than positive prediction instances in the
dataset as described in Section 6.1.1, and shown in Table 6.1. To solve this problem,
BAcc that results in a weighted score between the number of prediction classes was
used. Since the models trained depend on random initialization of weights, 5-fold CV
was performed to get the average performance of the models. Table 8.2 shows the CV
BAcc and loss that are a more realistic measure of the model’s prediction ability.

Results from Tables 8.1, 8.2 and 8.3 are not sufficient to arrive at a conclusion in com-
paring WGAN to the encoder-decoder model for the purpose of music generation



CHAPTER 8. RESULTS AND ANALYSIS 53

CV Iteration G(z) loss D(z) loss

1 1.000587 999953
2 1.000384 0.99962
3 1.000457 0.99959
4 1.000535 0.99956
5 1.000561 0.99952
µ 1.0005 0,9996
σ 0.00008 0.00017

Table 8.3: Training and five-fold CV EM loss for the WGAN model.

since they follow very different training methods with completely different objective
functions. Also, music quality is more subjective as an art form than it is objective,
and so there is a lack of good objective measures to base a conclusion on [37, 55, 60].

Figure 8.1: Left: Five-fold CV BAcc curves for the encoder-decoder LSTM. Right: Mean training
and CV BAcc curves.

Accuracy reported for the encoder-decoder model represents the mean fraction of
correct pitch predictions made by the decoder in the training song per prediction
class, and is depicted in the training curves shown in Figure 8.1. The EM distance for
WGAN is the final distance of the generators learned sampling distribution from that
of the training data distribution.



CHAPTER 8. RESULTS AND ANALYSIS 54

Figure 8.2: Loss curves for WGAN with the best grid search parameters: n_critic=5 and batch size=32.

The close training and CV mean BAcc curves in Figure 8.1 also show the network isn’t
overfitting. An overfitting model would regenerate the training music data samples
when primed with a close enough sequence of notes and would lack diversity in the
generated samples. Although the encoder-decoder does not seem to be overfitting
based on the CV accuracy, volunteers in the listening survey do hint at lack of diver-
sity and creativity in the encoder-decoder’s generated samples, discussed in Section
8.4.

Figure 8.2 contains training EM distance loss curves for the WGAN networks. Note
that the generator is much more unstable than the discriminator. The generator pro-
ducess an estimate of the true distribution, and the discriminator’s loss estimates how
far off the generator is through the EM distance. As stated earlier, due to the subjective
nature of music, a subjective evaluation method was used for the generated samples
and the results are presented in Section 8.2.



CHAPTER 8. RESULTS AND ANALYSIS 55

8.2 Mean Opinion Scores
In this section, the results of the MOS survey for the two generative models are pre-
sented.

Volunteer S1 S2 S3 S4 S5 S6 S7 S8

vol1 2,5 4 2 3 2,5 4 4 3
vol2 4 3,6 4 3 3 2 3,5 2,5
vol3 3 3 3 4 3 3,5 4 3
vol4 4 4 2 3 3,5 4 3 2
vol5 3,5 4 4 4 3 2,5 3 4
vol6 3 1 2 4 2 3 3,5 2,5
vol7 2,8 4 5 3,5 1 5 3 3
vol8 2,5 4 3,5 3 3 4 4 3
vol9 1,5 4 2,5 3 4 4 3 4,5
vol10 2 4 2,5 4 3 3 3,5 2,5
q(si) 2,88 3,56 3,05 3,45 2,88 3,5 3,45 3
σq(si)

0,77 0.91 0,99 0,47 0,78 0,84 0,42 0,71

Table 8.4: Listener impression scores for WGAN generated samples S1 to S8. q(si) represents the
MOS for each sample.

The results in Tables 8.4 and 8.5 show that volunteers generally scored WGAN sam-
ples higher than the encoder-decoder samples. This is reflected in the observation
that only one of four WGAN samples received a MOS below three, yet all encoder-
decoder samples got a MOS of three or lower. All samples from both models had
score variations that are considerably low (all below one), also, both models have
95% sample ratings that are within two standard deviations of each other. This is a
good indication that as much as the rating system is subjective and high variance is
expected, people’s opinions about the samples do not differ so significantly that it
were to seem they are each receiving a song of a different genre or were all exposed
to entirely different interpretations of what good music sounds like.

The overall results for both models across all samples are presented in Table 8.6, and



CHAPTER 8. RESULTS AND ANALYSIS 56

Volunteer S9 S10 S11 S12 S13 S14 S15 S16

vol1 3 3,3 1 2 2 3 2,5 3,5
vol2 2 3 3,5 2 3 3 4 2
vol3 2 4 2,5 2 2 3,5 3 2
vol4 4,5 3 3 5 2 3 2,5 3
vol5 2 2 3 2 1 3 2 2
vol6 4 2 3 3 3,5 2,5 4 3,5
vol7 2,5 3 4 2 3 4 2 4
vol8 3,5 3 3 3,5 2 3,5 3 2
vol9 3 2 3,5 2 3 3 3 3
vol10 3,5 3 3,5 3 3 4 2 4
q(si) 3 2,83 3 2,65 2,45 3,25 2,8 2,9
σq(si)

0,84 0,62 0,77 0,95 0,72 0,46 0,71 0,8

Table 8.5: Listener impression scores for the encoder-decoder LSTM generated samples S9 to S16.

WGAN LSTM Encoder-Decoder LSTM

Qqs 3,21 2,86
σQ(qs) 0,811 0,736
Qqs + 2× σQ(qs) 4,832 4,332
Qqs − 2× σQ(qs) 1,588 1,388
Median Score 3 3

Table 8.6: Mean and Median generator quality scores. Although the sample median scores from the
two models are equal, this does not imply they are drawn from polulations with equal median scores. It
is the Wilcoxon signed-rank t-test that gives a conclusive answer on equality of the population medians.

will be used to deduce which of the two models is considered a more skilled com-
poser of music than the other based on its generated samples. The results in Table
8.6 show that the WGAN samples have a higher mean opinion score than those of
the encoder-decoder model based on volunteer listener’s ratings. However, since the
arithmetic mean is a measure that can be greatly influenced by outliers, it is also im-
portant to consider the median opinion scores which is not influenced by outliers and
is a measure of centrality of data observations. The Wilcoxon signed-rank test is used
to assess whether the opinion scores collected for the WGAN and encoder-decoder



CHAPTER 8. RESULTS AND ANALYSIS 57

models come from populations with equal medians. The Wilcoxon test results are
discussed in the section below.

8.3 Wilcoxon Signed-Rank Test
The Wilcoxon signed-rank test for equal population medians as explained in Section
6.3.1 was performed using a Microsoft Excel workbook as it has built-in square root
functions, normal distribution, and many more functions. Using Equations 6.6, 6.7
and 6.8 as described in Section 6.3.1, the test statistic W, signed-rank standard devia-
tion σW and the z-score z were calculated and are presented In Table 8.7. The tabulated
results are used in making the decision to reject, or to not reject the null hypothesis of
equal population medians.

W σW |z| zα=0,95

-1132 393,90 2,8751 1,6449

Table 8.7: Wilcoxon signed-rank test results

It is standard to perform hypothesis tests to a certain level of confidence, usually
α = 0, 95. The critical z0,95 value is the inverse standard normal value under which
95% of all data will fall since the standardized signed-rank test statistic z follows a
standard normal distribution.

Results in Table 8.7 show that z > z0,95 and according to the Wilcoxon signed-rank
test, the null hypothesis of equal medians is rejected with 95% confidence in favour of
the alternative hypothesis. The alternative hypothesis states the two generative mod-
els produced samples with significantly different opi-nion score medians and thus
their population distributions are not centered around the same score. This is also
supported by plotting a histogram of opinion scores for both models in Figure 8.3.

Figure 8.3 shows that WGAN sample scores are skewed more to the right as compared
to those of the encoder-decoder network that form a more symmetric distribution.
The evident skewed WGAN sample score distribution and a higher median opinion
score suggest the higher WGAN MOS score is not falsely influenced by outliers, and



CHAPTER 8. RESULTS AND ANALYSIS 58

Figure 8.3: Opinion score distribution for WGAN and encoder-decoder LSTM generated music sam-
ples.

this too supports that WGAN samples were found to be more pleasing to listen to
than those generated by the encoder-decoder model.

8.4 Listener Comments
Although volunteers were not asked to provide any textual comments, some of them
did provide written feedback together with the rating scores. Majority of the com-
ments provided justification for the volunteer’s rating of the samples and their pref-
erence for one sample over the other. The generating model identity of the samples
were not known to the volunteers during the survey, named as simply sample 1 to
8 for the WGAN, and 9 to 16 for the encoder-decoder model. In total, 26 of the rat-
ings were accompanied by a comment. Some of the most insightful comments are
provided in the list below, with the generating model’s name instead of the sample
number revealed.



CHAPTER 8. RESULTS AND ANALYSIS 59

• "I couldn’t get a feel of where the encoder-decoder song is going, the WGAN sample has
a nice classical feel to it."

• "They both sound musical but the sound quality is bad."

• "I like the pace of the WGAN sample."

• "The encoder-decoder sample had too many silent spaces, the quiet spots emphasize the
loud spots ,sounded like rambling."

• "The WGAN sample is a little chaotic but generally creates a good atmosphere, the
encoder-decoder song has good rhythm but no actual melody.

• "I’d say the encoder-decoder song is better, has more rhythm, the WGAN sample sounds
too fast and just noise to me."

• "The WGAN Sample sounds like me when I am under dissertation stress, terrible."

• "The WGAN sample sounds more creative, the encoder-decoder sample wins on rhythm
although it takes soo long to get there."

• "What’s important to me is they all sound musical."

• "I don’t listen to this genre so my view may be way off."

• "Most of the songs sond similar to me."

• "Wow, can’t believe the WGAN sample was generated by a machine, though it’s funny
at the end LOL."

• "Can’t you get them to generate longer songs? perhaps with words? I like the encoder-
decoder sample."

The comments point to a general preference for WGAN music samples over those of
the encoder-decoder model. WGAN sample comments can be summarized using the
following keywords: melodic, rhythmic, nice, creative. The encoder-decoder samples
can be described: Slow, vague, rhythmic.



Chapter 9

Conclusion

This dissertation described and compared two training configurations of generative
models for music generation using MIDI data. After a detailed discussion of neural
network architectures normally used for time series data and their topological com-
ponents, state of the art music composition networks were discussed. A short back-
ground on the MIDI file format and its representation in this work was provided. The
work then detailed the WGAN and encoder-decoder models with LSTM components
implemented and compared for the composition task, followed by the experimental
setup and results.

The main purpose of the study was to first show that the adversarial configuration is
a viable approach to training neural networks for music composition, and that it pro-
duces music samples of superior quality as compared to non-adversarial training. To
be able to evaluate the generative skill of the two compared training configurations,
a survey was conducted where 10 volunteers were asked to listen to four randomly
selected samples from each generative model, and rate each sample on a scale from
1 to 5 based on how pleasing it was to listen to. 70% of rating instances resulted in
preference for WGAN over the encoder-decoder samples. 30% of volunteer ratings
pointed to a preference for encoder-decoder generated samples over WGAN sam-
ples. The ratings were then used to conduct a rating test to determine whether the
two model’s sample ratings were from populations with different medians, and this
test concluded they were. Assuming the sample ratings are representative enough of
their populations, this implies adding more volunteers to the survey would infer that

60



CHAPTER 9. CONCLUSION 61

the adversarial neural network is a better composer than the encoder-decoder neural
network.

Based on the results of the survey and comments from volunteers on the generated
samples, it can be concluded that adversarial training is a viable method for training
generative models for music generation, and it does produce more diverse and pleas-
ing to listen to music samples. Further experiments can be conducted on the WGAN
implementation above by including more varied training music genres, and allowing
the generator to generate longer sequences. Since the generator is an LSTM network,
methods normally used to improve performance and memory retention in sequence-
to-sequence models on natural language processing (NLP) tasks, such as adding an
attention [25] or pointer [26] layer can be explored.

Another avenue of further research to be explored is the development of formal and
objective evaluation methods for artistic tasks such as music generation and artistic
painting. Being able to accurately and appropriately evaluate models for such subjec-
tive tasks will greatly improve the quality of generated samples.



Bibliography

[1] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and orga-
nization in the brain”, Psychological Review, vol. 65, no. 6, pp. 386-408, 1958

[2] K. Arpathy, “CS231n Convolutional Neural Networks for Visual Recognition”,
Stanford University ,\T1\textquotedbllefthttp://cs231n.github.io/
neural-networks-1/\T1\textquotedblright, 2017, [online]; Accessed:23-
07-2018

[3] P. Werbos, “Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences”, PhD thesis, Harvard University, 1974

[4] A. Moujahid, “Data in Practice” ,\T1\textquotedbllefthttp://adilmoujahid.
com/posts/2016/06/introduction-deep-learning-python-caffe\T1\

textquotedblright, 2016, [online]; Accessed:03-06-2018

[5] S. Hochreiter, “The Vanishing Gradient Problem During Learning Recurrent Neural
Nets and Problem Solutions”, International Journal of Uncertainty Fuzziness and
Knowledge Based Systems, vol. 6, no. 2, pp. 107-116, 1998

[6] P. Werbos, “Backpropagation through time: what it does and how to do it”, Proceedings
of the Institute of Electrical and Electronics Engineers, vol. 78, no. 10, pp. 1550-
1560, 1990

[7] V. Nair, G.E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines”,
ICML’10 Proceedings of the 27th International Conference on Machine Learning,
pp. 807-814, 2010

62

\T1\textquotedblleft http://cs231n.github.io/neural-networks-1/\T1\textquotedblright 
\T1\textquotedblleft http://cs231n.github.io/neural-networks-1/\T1\textquotedblright 
\T1\textquotedblleft http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe\T1\textquotedblright 
\T1\textquotedblleft http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe\T1\textquotedblright 
\T1\textquotedblleft http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe\T1\textquotedblright 


BIBLIOGRAPHY 63

[8] B. Hanin, “Universal Function Approximation by Deep Neural Nets with Bounded
Width and ReLU Activations”,arXiv:1708.02691 [stat.ML], 2017, [Online]; Accessed:
20-07-2018

[9] A. Ng, “Feature selection, L1 vs. L2 regularization, and rotational invariance”, Proceed-
ings of the 21st international conference on Machine learning, pp. 78-78, 2004

[10] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, Journal of
Machine Learning Research, vol. 15, no.1, pp. 1929-1958, 2014

[11] Y. LeCun, L. Bottou, G. Orr, K. Müller, “Efficient BackProp”, Proceedings of the
International Conference on Neural Information Processing Systems, Neural Net-
works: Tricks of the Trade, pp. 9-50, 1996

[12] D.P. Kingma, and J.L. Ba, “ADAM: A method for stochastic optimization”, Interna-
tional Conference on Learning Representations, 2015

[13] H. Jaeger, “A tutorial on training recurrent neural networks”, covering BPPT,
RTRL, EKF and the "echo state network" approach. http://minds.jacobs-
university.de/sites/default/files/uploads/papers/ESNTutorialRev.pdf, 2005.

[14] K. Cho, B. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk and
Y. Bengio, “Learning Phrase Representations using RNN Encoder–Decoder for Statisti-
cal Machine Translation”, Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1724–1734, 2014

[15] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory”, Neural Computa-
tion, Vol 9, pp. 1735-1780, MIT Press Cambridge, 1997

[16] D. J. Im, C. D. Kim, H. Jiang and R. Memisevic, “Generating images with recurrent
adversarial networks”, arXiv preprint: https://arxiv.org/abs/1602.05110, 2016,
[Online]; Accessed: 20-07-2018

[17] C. Olah, “Understanding lstm networks”, Blog post: http://colah.github.io/

posts/2015-08-Understanding-LSTMs/, 2015, [Online]; Accessed: 20-07-2018

[18] T. Silva, “A Short Introduction to Generative Adversarial Networks”, Blog : https:
//sthalles.github.io/intro-to-gans/, 2017, [Online]; Accessed: 21-10-2018

https://arxiv.org/abs/1602.05110
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://sthalles.github.io/intro-to-gans/
https://sthalles.github.io/intro-to-gans/


BIBLIOGRAPHY 64

[19] A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior and K. Kavukcuoglu, “WaveNet: A Generative Model For Raw
Audio”, Proceedings of the 9th International Speech Communication Association,
Speech Synthesis Workshop, pp. 125-125, 2016

[20] I. Sutskever, O. Vinyals, Q. Le, “Sequence to Sequence Learning with Neural Net-
works”, Advances in neural information processing systems, vol. 4, 2014

[21] J. Briot, G. Hadjeres, FD. Pachet,“Deep Learning Techniques for Music Generation -
A Survey", arXiv:1709.01620: https://arxiv.org/abs/1709.01620, 2017

[22] V. Kalingeri and S. Grandhe, “Music Generation Using Deep Learning”, arXiv
1612.04928: https://arxiv.org/abs/1612.04928, 2016

[23] M. Alfonseca, M. Cebrian, Alfonso O. Puente, “A simple genetic algorithm for music
generation by means of algorithmic information theory”, Proceedings of the Institute
of Electrical and Electronics Engineers Congress, Evolutionary Computation, pp.
25-28, 2007

[24] A. See, P. Liu, C. Manning, “Get To The Point: Summarization with Pointer-Generator
Networks”, Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics, vol. 1, pp. 1073–1083, 2017

[25] M. Denil, L. Bazzani, H. Larochelle, and N. de Freitas , “Learning where to Attend
with Deep Architectures for Image Tracking”, Institute of Electrical and Electronics
Engineers, Neural Computation, vol. 24, no. 8, pp. 2151-2184, 2012

[26] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer Networks”, Proceedings of the
28th International Conference on Neural Information Processing Systems, vol. 2,
pp. 2692-2700, 2015

[27] K. Lopyrev, “Generating news headlines with recurrent neural networks”, arXiv
preprint https://arxiv.org/abs/1512.01712, 2015

[28] A. Oord, N. Kalchbrenner and K. Kavukcuoglu, “Pixel Recurrent Neural Net-
works”, Proceedings of the 33rd International Conference on Machine Learning,
vol. 48, pp. 1747-1756, 2016

https://arxiv.org/abs/1709.01620
https://arxiv.org/abs/1612.04928
https://arxiv.org/abs/1512.01712


BIBLIOGRAPHY 65

[29] Y. Wang, and F. Tain, “Recurrent residual learning for sequence classifcation”, Empir-
ical Methods in Natural Language Processing, 2016

[30] M. Schuster, and K. Paliwal, “Bidirectional recurrent neural networks”, Institute
of Electrical and Electronics Engineers, Signal Processing, vol. 45, no. 11, pp.
2673–2681, 1997

[31] J. F. Nash, “Equilibrium points in n-person games”, Proceedings of the national
academy of sciences. USA vol. 36, no. 1, pp. 48–49, 1950

[32] M. C. Mukkamala, M. Hein, "Variants of RMSProp and Adagrad with Logarith-
mic Regret Bounds", Proceedings of the 34th International Conference on Machine
Learning, vol. 70, pp. 2545-2553, 2017

[33] I. Goodfellow, J. Pouget-Abadie , M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, “Generative Adversarial Nets”, Proceedings of the 27th In-
ternational Conference on Neural Information Processing Systems, pp. 2672-2680,
2014

[34] A. Elgammal, B. Liu , M. Elhoseiny, M. Mazzone, “CAN: Creative Adversarial
Networks Generating "Art" by Learning Styles and Deviating from Style Norms”,
Proceedings of the International Conference on Computational Creativity, 2017

[35] F. Juefei-Xu, V. N. Boddeti and M. Savvides, “Gang of GANs:Generative Adversarial
Networks with Maximum Margin Ranking”, arXiv: https://arxiv.org/abs/1704.
04865, 2017, [Online]; Accessed: 21-07-2018

[36] L. Yu, W. Zhang, J. Wang and Y. Yu, “SeqGAN: Sequence Generative Adversarial
Nets with Policy Gradient”, Proceedings of the 31st AAAI Conference on Artificial
Intelligence, Vol. 31, 2017

[37] O. Mogren, “C-RNN-GAN: Continuous recurrent neural networks with adversarial
training”, Proceedings of the 30th International Conference on Neural Information
Processing Systems, Constructive Machine Learning Workshop, Spain, 2016

[38] I. Liu and R. Randall, “Predicting Missing Music Components with Bidirectional Long
Short-Term Memory Neural Networks”, Proceedings of the 17th International Society
on Music Information Retrieval Conference, New York, 2016

https://arxiv.org/abs/1704.04865
https://arxiv.org/abs/1704.04865


BIBLIOGRAPHY 66

[39] Z. Cui, R. Ke, Y. Wang, “Deep Stacked Bidirectional and Unidirectional LSTM Recur-
rent Neural Network for Network-wide Traffic Speed Prediction”, In 6th International
Workshop on Urban Computing, 2017.

[40] D. Shiebler,“Music_RNN_RBM”,https://github.com/dshieble/Music_RNN_
RBM/blob/master/midi_manipulation.py, 2017, [Online]; Accessed: 05-07-2017

[41] N. Tran, T. Bui, N. Cheung, “Dist-GAN: An Improved GAN using Distance Con-
straints”, European Conference on Computer Vision, 2018

[42] M. Arjovsky, S. Chintala, L. Bottou, “Wasserstein GAN”, Proceedings of the 34th
International Conference on Machine Learning, vol. 70, pp. 214-223, 2017

[43] M. Arjovsky and L. Bottou. “Towards principled methods for training generative
adversarial networks”. In International Conference on Learning Representations,
2017.

[44] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung , A. Radford, X. Chen , “Im-
proved Techniques for Training GANs”, Proceedings of the 30th International Con-
ference on Neural Information Processing Systems, pp. 2234-2242, 2016

[45] T. Mikolov, K. Chen, G. Corrado, J. Dean , “Efficient Estimation of Word Represen-
tations in Vector Space”, Proceedings of the International Conference on Learning
Representations , pp. 1-12, 2013

[46] L. Yang, S. Chuo, Y. Yang, “MidiNet: A Convolutional Generative Adversarial Net-
work for Symbolic-domain Music Generation”, Proceedings of the 18th International
Society on Music Information Retrieval Conference, 2017

[47] M. Bretan, G. Weinberg, and L. Heck. “A unit selection methodology for music gen-
eration using deep neural networks”, Proceedings of the International Conference on
Computational Creativity, 2017

[48] K. Goel, R. Vohra, J.K. Sahoo, “Polyphonic Music Generation by Modeling Temporal
Dependencies Using a RNN-DBN”, International Conference on Artificial Neural
Networks, Lecture Notes in Computer Science, vol. 8681, pp. 217-224, 2014

[49] T. White, “Sampling Generative Networks”, https://arxiv.org/abs/1609.

04468v3, 2016

https://github.com/dshieble/Music_RNN_RBM/blob/master/midi_manipulation.py
https://github.com/dshieble/Music_RNN_RBM/blob/master/midi_manipulation.py
https://arxiv.org/abs/1609.04468v3
https://arxiv.org/abs/1609.04468v3


BIBLIOGRAPHY 67

[50] J. Kim, “DeepJazz”, Using Keras and Theano for deep learning driven jazz gener-
ation https://deepjazz.io/, 2017

[51] I. Goodfellow, Y. Bengio, A. Courville, “Deep Learning”, MIT press, 2016

[52] R. Zaripov, “On the algorithmic description of the process of composing music”, In
USSR Academy of Sciences, vol. 132, no. 6, pp. 1283-1286, 1960

[53] F. Lerdahl, R. Jackendoff, “ A Generative Theory of Tonal Music”, Cambridge, MA:
MIT Press, 1983

[54] I. Xenakis, “ Formalized Music: Thought and Mathematics in Music”, revised ed.
Pendragon, 1992

[55] F. Colombo, W. Gerstner, “BachProp:Learning to Compose Music in Multiple Styles”,
https://arxiv.org/abs/1802.05162,2018,[Online]; Accessed: 19-07-2018

[56] H. Dong, W. Hsiao, L. Yang, Y. Yang, “MuseGAN: Multi-track Sequential Genera-
tive Adversarial Networks for Symbolic Music Generation and Accompaniment”, Pro-
ceedings of the the 30th international conference on Innovative Applications of
Artificial Intelligence, pp. 34-41, 2018

[57] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, “Empirical Evaluation of Gated Recur-
rent Neural Networks on Sequence Modeling”, Proceedings of the 27th international
conference on Neural Information Processing Systems, Deep Learning and Rep-
resentation Learning, 2014,

[58] E. Waite, “Generating Long-Term Structure in Songs and Stories”, Blog,https://
magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn, 2018,[On-
line]; Accessed: 12-07-2018

[59] D. Abolafia, “A Recurrent Neural Network Music Generation
Tutorial”, Blog,https://magenta.tensorflow.org/2016/06/10/
recurrent-neural-network-generation-tutorial, 2016,[Online]; Accessed:
21-10-2018

[60] A. Roberts, J. Engel, C. Raffel, C. Hawthorne and D. Eck, “A hierarchical latent
vector model for learning long-term structure in music”, 2018, Proceedings of the 35th

https://deepjazz.io/
https://arxiv.org/abs/1802.05162
https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn
https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn
https://magenta.tensorflow.org/2016/06/10/recurrent-neural-network-generation-tutorial
https://magenta.tensorflow.org/2016/06/10/recurrent-neural-network-generation-tutorial


BIBLIOGRAPHY 68

International Conference on Machine Learning, Machine Learning Research, vol.
80, pp. 4364–4373. Stockholmsmssan, Stockholm Sweden: PMLR

[61] P. Vincent, N. Lewandowski, and Y. Bengio, “Modeling Temporal Dependencies
in High-Dimensional Sequences:Application to Polyphonic Music Generation and Tran-
scription”, Proceedings of the 27th International Conference on Machine Learning,
2012

[62] A. Huang, and R. Wu, “Deep learning for music”,arXiv preprint,https://arxiv.
org/abs/1606.04930, 2016, [Online]; Accessed: 10-10-2018

[63] J. Koum, B. Acton, “WhatsApp”, Social messaging Application,https://www.
whatsapp.com/, 2009

[64] F. Chollet, “Keras”, Deep neural network library, http://keras.io/optimizers/,
2015

[65] J. Weel, “RoboMozart:Generating music using LSTM networks trained per-tick on a
MIDI collection with short music segments as input”, Bachelors Dissertation, Univer-
sity of Amsterdam, Faculty of Science, Science Park 904, 1098 XH Amsterdam

[66] H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu, “Video Paragraph Captioning Using
Hierarchical Recurrent Neural Networks”, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 4584-4593, 2016

[67] K. Lackner, “Composing a melody with long-short term memory (LSTM) Recurrent
Neural Networks”, Bachelors Dissertation, Institute for Data Processing Technische
Universität München, Munich, Germany, 2016

[68] J. Hui,“GAN-Wasserstein GAN and WGAN-GP”, https://medium.com\/@

jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490, 2018, [online];
Accessed: 03-10-2018

[69] J. Kiefer, J. Wolfowitz, “Stochastic Estimation of the Maximum of a Regression Func-
tion”, The Annals of Mathematical Statistics, vol. 23, no. 3, pp. 462-466, 1952

[70] H. Chu, R. Urtasun, S. Fidler, “Song from pi: A musically plausible network for pop
music generation”, Proceedings of the 5th International Conference on Learning
Representations, workshop paper, 2017

https://arxiv.org/abs/1606.04930
https://arxiv.org/abs/1606.04930
https://www.whatsapp.com/
https://www.whatsapp.com/
http://keras.io/optimizers/
https://medium.com\/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
https://medium.com\/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490


BIBLIOGRAPHY 69

[71] W. Clarke, transcribed by D. Dolby, “Speed of Plough”, No 217, Page 107 William
Clarke of Feltwell, https://maryhumphreys.co.uk/pdf/WilliamClarketunes.

pdf, 2010, [online]; Accessed: 27-09-2018

[72] C. Raffel, “Learning-Based Methods for Comparing Sequences, with Applications
to Audio-to-MIDI Alignment and Matching”,https://colinraffel.com/projects/
lmd/, 2018,[Online]; Accessed: 04-06-2018

[73] F. Wilcoxon,“Individual Comparisons by Ranking Methods”, Biometrics Bulletin,
vol. 1, no.6, pp. 80-83, 1945

https://maryhumphreys.co.uk/pdf/WilliamClarketunes.pdf
https://maryhumphreys.co.uk/pdf/WilliamClarketunes.pdf
https://colinraffel.com/projects/lmd/
https://colinraffel.com/projects/lmd/

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Motivation
	Problem Statement
	State of the Art
	Dissertation Layout

	Neural Music Generation
	Feed Forward and Recurrent Neural Networks
	Multi-layer Feed-Forward Neural Networks
	Important Background Concepts
	Back Propagation
	Activation Functions

	Recurrent Neural Networks
	Back Propagation Through Time
	Long-Short Term Memory Neural Networks

	Encoder-Decoder Models
	Conclusion

	Convolutional and Adversarial Neural Networks
	Convolutional Neural Networks
	Generative Adversarial Neural networks
	Wasserstein GAN

	Conclusion

	Data
	ABC
	MIDI
	Channels
	Pitch
	Velocity
	Time

	Dataset
	Conclusion

	Methodology
	Midi State-Matrix Representation
	Encoding
	Decoding

	Models
	Encoder-Decoder LSTM
	LSTM WGAN

	Evaluation Methods
	Wilcoxon Signed-Rank T-Test

	Conclusion

	Experiments
	MIDI Representation
	Model Hyper-Parameters
	Encoder-Decocer
	WGAN

	Music Generation
	Conclusion

	Results and Analysis
	Training and Test Results
	Mean Opinion Scores
	Wilcoxon Signed-Rank Test
	Listener Comments

	Conclusion

