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Abstract. Fish stock assessment typically involves a lot of manual counting that
requires specialists, and so is both time-consuming and costly. We propose a
method to perform both taxonomic classification and size estimation of fish, for
the purpose of building an automated stock assessment system that uses a stan-
dard camera. We use a subset(single fish images), of a large dataset generously
provided by the Nature Conservancy, and fisheries in Indonesia. We achieve a
95% top-1 classification accuracy, and 2.3cm mean error on size estimation, and
propose a way to perform automated stock assessment on images with multiple
fish. The resulting models are published on Hugging Face models.

Keywords: Computer Vision · Fish Stock Estimation · Classification · Size Esti-
mation.

1 Introduction

Predictions that all of the world’s stocks of commercially important fish could be col-
lapsed by the year 2048 [24] have been tempered by recent evidence that fish stocks
are recovering in many developed nations [25]. This turnaround is typically attributed
to stringent catch limits backed by accurate scientific assessment of the number of fish
in a particular stock. It is difficult to set a limit on catch appropriately unless scientists
know how many fish are actually present in a wild population. Unfortunately, the ma-
jority of the world’s fisheries remain “unassessed” and the prognosis for these fisheries
is concerning [4]: populations are declining and are on a trajectory towards functional
extinction. One of the major barriers to performing fish stock assessment in the devel-
oping world is the cost. The federal government in the US spends approximately $215
million a year on fish stock assessment [17], which excludes spending by state govern-
ments on assessment of stocks within 3 nautical miles of the coast (state waters). As
an example, the average cost of a fish stock assessment performed by NOAA’s Pacific
Islands Fisheries Science Center in Honolulu is $5.6 million, which exceeds the total
value of many developing country fisheries.

Costly stock assessment also prevents many well-managed fisheries from accessing
lucrative markets for sustainable seafood. For example, the Marine Stewardship Coun-
cil (MSC), which endorses seafood with their blue eco-label requires detailed stock
assessment of the fishery for certification. In [21], the authors argue that the high costs
of certification remain a barrier to many fisheries in Latin America and the Caribbean
accessing the benefits of seafood ecolabels. For example, there is only one fishery cer-
tified as sustainable in Indonesia by the MSC, and this is, in part, because the species
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Fig. 1: Fishers in Indonesia on their boats measuring their catch on a standard color
coded measuring board.

being targeted (yellowfin tuna) occurs throughout the Pacific Ocean; the expensive as-
sessment of this stock is performed by an intergovernmental body, funded by the US,
Australia, France, Japan, and a number of other countries. Here we propose a methodol-
ogy for drastically reducing the cost of fisheries stock assessment by combining citizen
science with machine learning. We gave small-scale fishers as seen in Figure 1 in In-
donesia digital cameras, and asked them to photograph everything they caught on a
uniform background. A team of fish biologists then identified the species and length of
fish from the photographs, resulting in over 300, 000 images, and over one million fish
hand-labeled by species and length. We focus on the tropical snapper-grouper fishery
in Indonesia, one of the most difficult fisheries in the world in which to perform a stock
assessment. Fishers catch over a hundred different species of various sized fish using
a variety of fishing gears spread across Indonesia’s 17, 000 different islands. The com-
plexity of the task and the limited available resources make technological innovations an
attractive alternative to traditional methods. Furthermore, if novel artificial intelligence
methods can be used to perform a low-cost and accurate assessment in this fishery, then
the same approach should work in practically any other fishery in the world. In this
work, we present a machine learning approach to predicting fish species and length
from photographs taken by fishers. To do this, we collaborate with fishers willing to
take photographs through The Nature Conservancy Indonesia, and field biologists who
have annotated over 1 million fish in these photographs. By leveraging transfer learning,
we train a segmentation model that feeds into species classification and size estimation
models achieving performances worthy of practical deployment.

2 Related Work

Taxonomic Classification: Deep learning algorithms (DL) have seen much success in
image classification tasks post ImageNet [13]. ImageNet and other large image datasets
such as MS COCO [16], demonstrated not only the versatility of such networks, but also
their robustness to over-fitting on very large labelled datasets [23,15]. These models
have been applied to various domains including, but not limited to work closest to ours:
broadly segmentation and classification of fish species [22,6,9,20,2].
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Fish Size Estimation: Estimating the size of a fish in centimeters from an image
requires a reference object of known length in most cases. In our work, 10cm rectangu-
lar color areas situated on the sides of each measuring board that the fish is to be placed
on are used. These act as fiduciary markers to guide the estimation of the fish size. In
[1], a mask R-CNN similar to our choice is used to detect the head and rest of the fish’s
body. Each of these lengths is estimated separately. This method works well for a rela-
tively small dataset containing fish of the same species that are all of the similar size. In
our case, the sizes of fish range wildly, from as little as 32cm to more than 100cm, this
necessitates the need for fiduciary markers for perspective. In [19], the authors place
three fiduciary markers, one in the background, one in the forefront, and a laser marker
for estimating fish length using standard smartphone cameras. In [18], the authors also
place three ArUco fiduciary markers of different sizes on polypropylene sheets, along
with the fish to be measured. They use mask R-CNN to detect and segment objects of
interest. Their work is evaluated on a much smaller dataset (1000), of fewer fish species
than we address, and does not address both species classification and size estimation,
which are necessary for stock estimation.

3 Methods

In this section we outline implementation details for data collection, image segmenta-
tion, classification and fish length regression. The different models and experimental
setup is explained.

3.1 Data Collection

Small-scale fishers in Indonesia were given digital cameras and asked to photograph
everything they caught. To help standardize the photographs, the fishers were asked to
photograph their catch on a 1-by-0.8 m plastic board provided to them. These are white,
with multi-colored markings every 10 cm that serve as a fiduciary marker for scale. Fish
are placed on these boards — sometimes many fish at a time — and photographs are
taken from a variety of distances, angles, and lighting conditions (Figures 3 and 2). A
team of fish biologists then examined each photograph, labeling the species and length
of each fish. From over 300,000 photographs, approximately 1.2 Million fish are labeled
in this way, with 163 different species represented. Massive data-labeling projects al-
ways contain some level of error. In this case, one source of error is that photographs
containing multiple fish are not consistently labeled in the same orientation. In most
images, fish are labeled from top-to-bottom, left to right, but many examples are found
in which this is not the case, and the extent to which label noise on multi-fish images
exists is unknown. It is important to have a standard way of assigning the provided la-
bels to the fish on the board in cases of multiple fish so we can, in a later stage train
models on the much larger dataset of 1, 2 Million fish, and make the dataset publicly
available.

https://pyimagesearch.com/2020/12/21/detecting-aruco-markers-with-opencv-and-python/
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Fig. 2: An example of a typical
image containing 2 fish on a

marked board from the dataset

Fig. 3: Axample of an image
segmented using Detectron2 to
identify both the fish and the

10 cm colored rectangles used
as fiduciary markers (bottom).

3.2 Image Segmentation

Since most images contain multiple fish, our system first applies an object detection
model to identify each individual fish, then, we perform species classification and length
regression. Separate machine learning models perform each of these three tasks. The
object detection and segmentation model is pre-trained on MS COCO, and fine-tuned
on a small dataset of images that we annotated. This is done by segmenting fish and a
set of fiduciary markers: four 3-by-10 cm colored boxes (two yellow and two blue), that
are located on the edges of the presentation board. These markers are chosen because at
least one of the four is readily identifiable in most of the images. Using the VGG Image
Annotation (VIA) tool [7], we sampled 700 random images containing single fish, and
annotated these with polygon outlines of the three different types of object: (1) a fish;
(2) yellow colored boxes; (3) blue-colored boxes. When these objects are occluded by
humans, their shadows, or fishing nets, the shape of these objects is inferred by the
annotator (Figure 4).

The annotations are used to fine-tune an object-recognition model: a Resnet-50 ar-
chitecture [12] using Facebook’s Detectron2 instance segmentation [26]. Detectron2,
written in Pytorch, is a collection of re-implementations of state-of-the-art object-detection
algorithms including Mask R-CNN [11] for detection and segmentation, that we use in
this work. Mask R-CNN trains a single convolutional neural network for pixel-wise seg-
mentation, classification, and bounding box regression. In mask R-CNN, a pre-defined
number of regions of interest (ROIs) are proposed, of adjacent pixels similar in color,
texture, or intensity from the features learned by a stack of convolutional layers. The
network is then trained to minimize the classification and segmentation losses of the
best ROIs.Once ROIs with very high probabilities of containing objects are found, a
fully connected layer is added to predict the x, and y coordinates of a rectangular re-
gion that most tightly encloses the objects with high confidence. Given a new image,
the trained model produces a list of detected objects, each with the following informa-
tion: (1) the predicted class (fish, yellow color box, or blue color box); (2) a bounding
box that represents the smallest rectangular region that completely contains the detected
object; (3) a pixel-wise segmentation mask outlining the object; (4) an object-level con-
fidence score. On the validation dataset, the system uses the predicted segmentation
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mask to crop out images of individual fish, and these cropped images are used as input
to the classification and regression models.

3.3 Species Classification

The species classification model is an Inception-ResNet V3 (pre-trained on the Ima-
geNet dataset [5]) fine-tuned to classify fish species from cropped images containing a
single fish. This model is trained on the subset of 50, 000 images that only contain a
single fish because it is for these images that we are most confident in the labels. Of this
subset, 40, 000 images (80%) are used for training, and 10, 000(20%) are held out for
validating the model. During training, a number of augmentation strategies are used to
improve generalization; these are listed in Table 1. Since we eventually want to classify
fish species even in cases where there are multiple fish in an image, we make use of the
segmentation output of the Detectron2 model to crop out only the bounding box around
each fish and use this as input in training the classifier.

Transformation Range/Value

intensity normalization [0,1]
Random Rotation [0,30◦]
width, length, channel shift and random zoom [0, 0.2]
shear [0, 0.3]
feature-wise normalization and horizontal flip Yes
fill mode nearest
re-scale 152× 152

Table 1: Data augmentations applied during training of the species classification model.

The classifier is trained for 100 epochs with early stopping, and learning rate reduc-
tion on the plateau, based on the validation set performance at the end of each epoch, it
produces the final prediction on the validation set that we evaluate the quality of. Dur-
ing testing, no random transformations are applied, but the images are first cropped to
the size of the bounding box of each fish, then re-scaled to 152× 152, and pixel values
are divided by 255 to be in the range [0, 1].

3.4 Length Regression

Length regression is performed in two steps. First, we use the outputs of Detectron2 to
detect and locate fish and the colored markings on a board which are normally used by
the biologist annotators to determine the fish length. The color boxes are of fixed size
on every board in centimeters(cm), and thus provide scale information — our strategy
is to detect these markings using object recognition to aid in the length prediction task.
For each image with one or more fish, we restrict the problem to images with at least
one visible Fiduciary color marker, this is necessary as the images are not captured
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Fig. 4: The Detectron2 instance-segmentation model is trained to detect fish along with
the yellow and blue color boxes on either side of the boards. In this example, a human

annotator has outlined these objects using the VGG Image Annotation tool.

from a single view distance and angle. We then extract features from the output of the
segmentation model based on the current image and use these to train two ensemble
regression models to predict the size of the fish in centimeters. In the case where there
is only one fish on the board, the vertical and horizontal pixel distances of the bounding
box and segmentation mask are used together with the confidence scores for the color
boxes. These aggregate features extracted from the color boxes are especially useful
in cases where some color boxes are occluded by the fish or have bad lighting for the
segmentation model to predict the highest intersection over union(IOU) percentage.
Estimation of fish length requires the use of fiduciary markers since the photos are
taken from a variety of distances and angles. Thus, we restricted our analysis to images
for which at least one colored box is detected. For each fish and colored box object
detected, we calculate a set of features, then a fish’s length is predicted from a set of
summary statistics:

1. Colour Boxes: Color box count, median color box length, mean color box length,
median color box segment length, maximum color box segment length.

2. Detected fish: The confidence score for each fish object, length of the bounding box
around the fish, and length of the segment mask of the fish, we use both since the
segmentation mask can sometimes be slightly shorter than the actual fish object as
we do not achieve a 100% IoU on fish segmentation.

These features are used as input to a random forest regression model. We train two
ensemble regression models, a random forest regressor with 300 trees, and a gradient
boosting regressor with 300 trees as well. Both models optimize a Mean Squared Error
loss. The model is trained and evaluated using 5-fold cross-validation on the same sub-
set of 50, 000 images containing one fish since we are most confident in those labels.
We then pick the model that performs best on the 5-fold cross-validation as the final
length regression model.
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4 Results

In this section, test results for the different components are presented starting with per-
formance on single fish ni = 1 images, followed by images for ni > 1 fish on a board.

4.1 Single Fish Detection and segmentation

We evaluated the segmentation model in terms of accuracy and the intersection over
union (IoU) score on the held-out validation set images. These metrics inform us of
how often we are detecting and correctly assigning objects, as well as how well the
segmentation mask covers the object since these outputs directly feed into the length
estimation algorithm. A high IoU score (near 100%) means the bounding boxes fully
and tightly enclose the fish, and this will result in better data for the downstream classi-
fication and regression tasks

Fig. 5: Prediction of the Detectron model showing 6 segmented fish as well as 2 yellow
and 2 blue Fiduciary color markers, all enclosed in their bounding boxes

The trained model is able to detect fish in the image 99% of time while detecting
the fiduciary markers correctly 97% of the time. The IoU of the predicted segmenta-
tion masks has mean 92% (median 94%) for fish and mean 86% (median 88%) for the
fiduciary markers (see Figure 6). Figure 5 is an example of predictions on an image
where high IoU is achieved for all the fiduciary markers and fish on the board. The de-
tection rate and IoU impact the performance of the classification and length regression
models. A good IoU score means the bounding boxes fully and tightly enclose the fish,
and this will result in better training data for length estimation in the case of single fish
images. In the case of multi-fish images, both classification and regression are affected
by a bad IoU from the Detectron2 in that having bounding boxes that do not tightly
enclose the fish will result in an overestimation of the lengths, and lead to parts of one
fish appearing in the crop of another fish that could be of a different species.

4.2 Single Fish Species Classification

For species classification, We fine-tune a pre-trained ResNet-50 model on images of
single fish for 100 epochs using a dataset of 50, 000 images. The baseline model is
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trained on the whole image, including all the background surrounding the fish. The
second model is trained only on the area inside the bounding box containing the detected
fish from the instance segmentation model.

While the first model can capitalize on surrounding objects to better assign species
classes, it is the latter that is better suited for application on images of more than one
fish. We achieve a 91% top-1 and 98% top-5 accuracy on the full image validation
dataset, and a 89% top-1, 97% top-5 accuracy on the model trained on cropped single
fish images.

Fig. 6: Box and whiskers plot showing five key statistics of IoU results on the
validation set

4.3 Single Fish Length Regression

Fig. 7: Size estimation results.

0 cm 50 cm 100 cm 150 cm 200 cm 250 cm
Real size

0 cm

50 cm

100 cm

150 cm

200 cm

250 cm

Pr
ed

ict
ed

(a) Scatter plot of length pre-
dictions with Random Forest.
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(b) Relative errors of the Ran-
dom Forest predictions.
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(c) Restored population distri-
bution.

Five-fold cross-validation produced a Mean Absolute Error of 2.3cm and a coeffi-
cient of determination (R2), of 79%. Figure 7 (a) shows a scatter plot of the predicted
lengths of the fish against the true labels on the validation set. In the figure, predictions
are accurate, especially for mid-sized fish (60− 80cm), which form the majority of the
validation set as shown in the distribution of size in Figure 7 (c). On the longer end of
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the spectrum, the model tends to underestimate sizes, and this could largely be due to
a lack of enough large fish training examples for the model to learn from. This prob-
lem can be solved to a large extent by having more large fish in the training dataset or
applying oversampling techniques on large fish images. A look at Figure 7 (b) shows
the relative errors are centered around zero with a very small deviation. We can expect
similar results on a larger dataset drawn from a reasonably similar distribution.

4.4 Multiple Fish

At this point, we only apply models trained on the single fish images to the complete
dataset as a baseline with future improvements in mind that will be discussed in Sec-
tion 4.6. In Figure 8(b), Out of the 300000 images with multiple fish, we detect the
exact number of fish in 92% of prediction instances, predicting over the true count in
3%, and predicted count less than the actual count in 5% of images.

Multi-fish Classification After running the fine-tuned Detectron2 model on the 1.2M
dataset and achieving a fish detection rate of 92%, We looked at the confusion matrix
of the number of fish objects the model detects versus the actual number of objects in
each image. This analysis is important in understanding the margin of error in the cases
where we do not detect fish. It can also aid in discovering whether the model focuses
only on fish on a board as trained, and not any other fish in the background outside the
board as depicted in Figure 8 (a).

Fig. 8: Detectron2 segmentation prediction example and detected fish count heat-map.

(a) Example image containing multiple
fish with the model successfully detect-
ing only fish placed on the board.

(b) Detected vs ground truth fish
count heat-map in multi-fish im-
ages. The Darker the diagonal en-
try color, the better detection rate by
the model.

The confusion matrix heat-map in Figure 8 (b), illustrates that the detection model
is mostly off by 1 or 2 fish when it under or over-predicts fish instances. It also shows
that: the more fish you have on a board the more likely we are to predict the wrong
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Number of Fish 1 2 3 4 5 6 7

Top-1 Accuracy % 95 91 81 72 68 68 66

Table 2: Multi-fish classification accuracy across the number of fish objects in an image,
using the model trained on single fish images. This is from a total of 300000 images
containing 1.2 Million fish objects

count of fish objects. This normally happens more often with smaller-sized fish than it
does with larger fish. The single fish dataset is only a small subset of the larger dataset
of 300000 images containing 1.2 Million fish. While the whole dataset is labeled and
represents the largest annotated collection for the tasks of fish species classification
and length regression. The labels to images with a large number of fish on one board
are not straightforward to assign to the placement of fish on the board, so some level
of analysis is required in assigning the labels correctly. With further fine-tuning of the
segmentation model, we are able to run species classification and length regression on
each fish instance in a picture. This allows us to train both the classifier and length
estimator on a much larger dataset of 1.2 Million fish. Table 2 shows classification
accuracy results on the complete 1.2M dataset. Performance on images with one or two
fish is consistent and slightly better than that on the validation split of the 50000 single
fish images discussed in Section 4.2. Performance drops significantly from three fish
upwards. This can be explained by the observation that it is smaller fish that are packed
onto the board in groups of three or more, and these smaller-sized fish are not very well
represented in the single fish images training data, as can be seen in the size distribution
in Figure 7 (c). To combat this problem, we seek to compile a dataset of all 1.2M fish
images, extracted using the trained segmentation model, and cropped out as individual
fish. Once this dataset is compiled, it will form the largest labeled dataset of fish images
with more than 150 species.

4.5 Multi-fish image dataset

The construction of this dataset depends heavily on the accuracies of two prior pro-
cesses: (1) The process of placing and labeling the fish on the boards done by the human
experts and (2) How well the trained segmentation model generalizes to images with
multiple fish. As mentioned before, assigning labels from a list, onto each fish on multi-
fish images, turns out to have not always been done consistently during labeling. Some
images are labeled top to bottom, while others bottom up or right to left depending on
the orientation of the board and the position of the photographer when the picture was
taken. Some engineering is required to be able to match fish to labels to a reasonable
level of confidence though more work is still required.

Fish to label Matching For images with one or two fish, matching the labels to the fish
is trivial as there are only 1 or two possible combinations. In cases where the detection
and segmentation model detect fewer fish than we have on a board, such images are
excluded from our target dataset at this time. For images with three fish and above on
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a board, we use a trained single fish species classifier’s log-likelihood on each image
and take the combination with the highest likelihood as the correct orientation: label
match. Once the dataset of 1.2M fish is labeled following this procedure, we then train
a species classifier on it to achieve an 85% top-1 accuracy. A likely reason for the drop
in performance is the error inherent in our matching process. With these promising
results on multi-fish images, we seek better ways of getting to a complete 1.2M fish
dataset with little to no uncertainty in the labels.

4.6 Discussion and Future Research

This paper presented results on methodology to predict both fish species and size us-
ing widely open source deep learning (DL) architectures, transfer learning, and a large
collection of fish images generously provided by the Indonesia fisheries and the nature
conservancy. It also introduces work being done towards the ImageNet of fish: FishNet,
a large collection of labeled fish images. This will greatly improve the predictive ca-
pabilities of DL models for marine life that will eventually be deployed to help in fish
stock assessments, greatly reducing both the time and money required to perform as-
sessments. We make the trained segmentation and classification models publicly avail-
able on Hugging Face. Based on our findings, an avenue for future research involves
considering deep learning-based algorithms in the presence of label noise, as well as
deep active learning methods for image segmentation and classification with a noisy la-
beling oracle [10,3,14]. It would also be useful to consider self-supervised pre-training
[8] to combat label noise.
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